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ABSTRACT
Delegated authentication is a very popular and effective paradigm to

deal with entity authentication problems for resource-constrained

clients in cyber-physical systems; namely, the authentication be-

tween two clients is proxied by a trusted authentication server.

However, an attacker may compromise the authentication server to

impersonate the clients for sabotaging the cyber-physical systems.

To detect the identity fraud attacks caused by an authentication

server compromise, we propose two mutual authentication pro-

tocols by using a pseudo-random function family and a one-time

signature (OTS) scheme. Our idea is to leverage the continuously

evolving OTS signing and verifying keys at the signer and the

verifier sides respectively for identity fraud detection because an

identity fraud attack would violate the victim’s honest OTS key

update procedure. The proposed protocols are proven secure under

a new mutual authentication security model that formulates the

identity fraud detection.

CCS CONCEPTS
• Security and privacy→ Key management;Multi-factor au-
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1 INTRODUCTION
A cyber-physical system (CPS) is a system comprised of various

physical devices that are interconnected over a network to exchange

data autonomously. Nowadays, CPS can not only facilitate the daily

lives of people but also improve industrial efficiency, where the

concrete CPS includes railway systems, water treatment systems,

and many other Internet-of-Things systems. However, due to the

computational limitation of those client devices, the security of CPS

is always not a priority, which results in that malicious attackers can

attack CPS in many ways [14, 21]. The first step to prevent unautho-

rized access to those critical devices is to authenticate the identity

of communication principles before they can accept commands or

exchange data. Practical cross-domain communication scenarios in

CPS include: multi-branch communications (e.g., communication

between two stations of a railway system), and edge-computing

driven communication between two companies’ CPS. In these sce-

narios, each entity is typically registered to a domain-specific server,

such as a station management server (for railway communications)

or enterprise authentication server (for edge-computing commu-

nications). The two communicating entities from different CPS

domains typically neither share a symmetric key nor possess each

other’s public key certificate, so the authentication between them

is usually delegated by their own domain servers.

Many lightweight authentication protocols have been proposed

in the context of delegated authentication [4, 10, 11, 19, 23, 24, 37,

38]. Specifically, the authentication of clients (including users and

constrained devices) is outsourced to a trustworthy third-party au-

thentication server, which relies on a symmetric key framework. In

the traditional framework, there is no shared key between clients,

but each client may have a pre-shared key with the authentication

server. However, an obvious drawback is that the compromise of

an authentication server implies a compromise of the whole system

since the attacker would know all authentication keys. That is, an

attacker who compromised the authentication server can imper-

sonate any client. In practice, the compromise of an authentication

server may also be caused by malicious insiders who try to sabotage

(e.g., impersonate clients to send malicious instructions to client

devices in a critical CPS). To the best of our knowledge, there is

no existing technique to identify which authentication server is

compromised in such a delegated authentication framework. Due to

the existence of zero-alarm attacks [3, 29], it may be even harder for
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Figure 1: Overview of Our Delegated Mutual Authentication Protocol

administrators to identify the compromised server since there is no

obvious trace to track such attacks. To this end, we are motivated

to seek a more affirmative way to detect the identity fraud events

caused by a compromised authentication server, so that we can

not only fix the compromised server but also help administrators

identify the responsible staff for the identity fraud events (e.g., in

the case of insider attacks).

In a large CPS, like manufacturing systems and water treat-

ment systems, multiple controllers (called Programmable Logic

Controller or PLC in such systems) sometimes need to communi-

cate with each other to cooperate to complete a complex process.

Since each controller only has very limited computational power

for security enhancement, it is particularly interesting to shift the

burden of authentication to the servers, which leads to the delegated

authentication paradigm. Moreover, due to the air-gapped nature

of these systems, the servers, which are connected to the enterprise

network and sometimes the Internet, are more vulnerable to remote

attacks. Thus, we are also interested in solving the security issues

after a fraction of servers are compromised and impersonate other

controllers in the network. By introducing identity fraud detection,

we will be able to audit the system and detect such an attack.

OurWork. Tomitigate the compromise of an authentication server

in the delegated authentication framework, we focus on studying

identity fraud detection (IFD) in this work. Our goal is to design

lightweight mutual authentication protocols that enable an honest

authentication server to detect not only a compromised client but

also the identity fraud events caused by other compromised authen-

tication servers. An overview of our proposed protocol is presented

in Fig. 1. Note that we adopt a similar system model standardized

for cross-domain authentication [34].
1

In our protocol, each client has a separate authentication dele-

gator which is selected from a pool of authentication servers. Our

main idea for achieving IFD is to leverage evolving one-time signa-

ture (OTS) keys (of clients and servers). We allow a party to commit

(sign) its next public key in a signature using its current OTS se-

cret key, which would lead to a signature chain on the fly. The

authentication delegator selected by a client is responsible for the

update of its OTS key once so that it will be marked as unavailable

after the corresponding session is over. The authentication delega-

tor will become available after its authentication task is checked

by the other authentication servers. For a pool with size 𝑧, every

OTS key update procedure in a session will be checked by 𝑧 − 1
authentication servers in the subsequent sessions.

1
In contrast, we here focus on delegated authentication for machine-to-machine, not

password-based setting.

To resist network failures, a party should locally ‘cache’ the cur-

rently unchecked signature-chain and ‘replay’ it in the next session.

When an authentication server finishes its delegated authentica-

tion task, it should faithfully include the OTS public key evolving

procedure into a public database to ensure that all sessions should

be auditable. Hence each of the 𝑧 − 1 authentication servers should

check the OTS key update procedure of the client by comparing the

client’s OTS cache and the historical protocol transcripts recorded

in the database to figure out identity fraud attacks. However, using

only OTS for authentication is subject to network attacks. This is

because an attacker can interfere with the OTS public key update

procedure and force the cached signature-chain to be over-long. For

example, the attacker can keep initiating sessions on the client-side

to generate and cache many new OTS public keys (in the signature

chain) without sending back the authentication server’s acknowl-

edgment messages.

To prevent network attackers, we adopt a hybrid approach such

that the mutual authentication protocol is achieved by using both

long-term symmetric key-based message authentication code and

asymmetric key-based one-time signature (OTS). Firstly, most of

the protocol messages are protected by the message authentica-

tion code computed based on the long-term pre-shared key. The

long-term key-based authentication is useful in the IFD. This is

because, if the message authentication codes are valid in a session,

but the relevant one-time signature is invalid, then it implies that

the honest party must have been impersonated before. Secondly,

the OTS ensures the following two security properties (as defined

in [20]): 1) forward security, which protects the compromised OTS

secret keys from affecting the security of previous sessions using

uncorrupted keys; 2) backward security, which means that if a

party runs the mutual authentication to update the compromised

OTS secret key before the adversary uses it in an impersonation

attack, then the compromised key would become invalid (due to

its one-time feature). Note that the backward security cannot be

achieved by using forward secure signature [18]. And OTS is more

computationally efficient.

To evaluate the performance of our proposed methods in a real-

world scenario, we implemented a two-party system. The server

in the system is a laptop, while a Raspberry Pi based OpenPLC

is used as a CPS device. We choose to use OpenPLC because the

commercial PLCs on the market are all closed-source, and do not

allow us to modify their implementations. OpenPLC is an open-

source implementation of a programmable logic controller (PLC) [5],

which is widely used in the community of CPS security researchers.

The experimental results show that our proposed framework is

efficient in terms of communication, computation, and memory
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utilization in a cyber-physical system if the parameters are chosen

properly.

Our contributions can be summarized as follows:

• A two-party mutual authentication protocol 2MA, which pro-

vides weak impersonation detection when the victim is not con-

trolled by the attackers.

• A delegated mutual authentication protocol 4MA, which is built

from 2MA and provides the server’s strong identity fraud detec-

tion even when the server is a malicious insider.

• A new security model that is proposed to capture the mutual

authentication with the server’s strong identity fraud detection.

• The proposed protocols are proven secure in the standard model.

Organization. We introduce necessary preliminaries in Section 2.

The security model of mutual authentication with identity fraud

detection is presented in Section 3. Section 4 presents two mutual

authentication protocols of which the second protocol can provide

the server’s identity fraud detection. The security of the proposed

protocols is analyzed in Section 5. Performance analysis and evalu-

ation results are presented in Section 6. We review the literature

related to our work in Section 7. The paper concludes in Section 8.

2 PRELIMINARIES
Notations. Let 𝜅 ∈ N be the security parameter and 1

𝜅
be a string

that consists of 𝜅 ones. We denote with [𝑛] = {1, . . . , 𝑛} ⊂ N the

set of integers between 1 and 𝑛. If 𝑋 is a set, then 𝑥
$← 𝑋 denotes

the action of sampling a uniformly random element from 𝑋 . If 𝑋 is

a probabilistic algorithm, then 𝑥
$← 𝑋 denotes that 𝑋 is run with

fresh random coins and returns 𝑥 . Assuming that 𝑋 is a set, we

denote with |𝑋 | the operation to obtain the number of elements in

𝑋 . We may use the operation 𝑋 [𝑖] to get access to the i-th element

of𝑋 . We let the operation ∥ denote the concatenation of two strings.
In the following, we review the cryptographic primitives [16]

used in our constructions.

Digital Signature Schemes. We define a (regular) digital signa-

ture scheme SIG with three probabilistic polynomial time (PPT)

algorithms (SIG.Gen, SIG.Sign, SIG.Vfy). A one-time signature

(OTS) scheme is denoted byOTS = (OTS.Gen,OTS.Sign,OTS.Vfy),
which is a special case of SIG. We assume that a signature scheme

is associated with public and secret key spaces {PKSIG,SKSIG},
a randomness space R𝑠 for key generation, message spaceMSIG,

and signature space SSIG in the security parameter 𝜅. We denote

the bit-length of space R𝑠 by ℓ𝑠 which is determined by 𝜅. The

algorithms of SIG are defined as follows:

• SIG.Gen(1𝜅 , 𝑟𝑠): This algorithm takes as input the security pa-

rameter 𝜅 and a random value 𝑟𝑠
$← RSIG, and outputs a (public)

verification key 𝑣𝑘 ∈ PKSIG and a signing key 𝑠𝑘 ∈ SKSIG.

• SIG.Sign(𝑠𝑘,𝑚): This is the signing algorithm that generates a

signature 𝜎 ∈ SSIG for a message𝑚 ∈ MSIG using 𝑠𝑘 .

• SIG.Vfy(𝑣𝑘,𝑚, 𝜎): This is the verification algorithm that takes

as input a verification key 𝑣𝑘 , a message𝑚 and a signature 𝜎 ,

outputs 1 if 𝜎 is a valid signature for𝑚 under 𝑣𝑘 , and 0 otherwise.

Let SIG(𝑠𝑘, ·) be a signing oracle which on input message𝑚

returns a signature 𝜎 ← SIG.Sign(𝑠𝑘,𝑚). We use a list SR to record

all tuple (𝑚𝑖 , 𝜎𝑖 ) where𝑚𝑖 and 𝜎𝑖 are the input and output of 𝑖-th

SIG oracle query respectively.

Definition 1. For a signature scheme SIG = (SIG.Gen, SIG.Sign,
SIG.Vfy) and an adversary F , we define the following experiment:

EXPseuf-cma
SIG,F (𝜅,𝑞) : (𝑠𝑘, 𝑣𝑘) $← SIG.Gen(1𝜅 ) ; (𝜎∗,𝑚∗) ← FSIG(𝑠𝑘,·) (𝑣𝑘) , where
SIG(𝑠𝑘, ·) can be asked at most 𝑞 times; Return 1, if SIG.Vfy(𝑝𝑘,𝑚∗, 𝜎∗) =
1, and (𝑚∗, 𝜎∗) ∉ Slist; Output 0 otherwise.

We define the advantage of F in the above experiment as: Advseuf-cma
SIG,F

(𝜅, 𝑞) := Pr[EXPseuf-cma
SIG,F (𝜅, 𝑞) = 1] . We say that SIG is secure

against strong existential forgeries F under adaptive chosen-message
attacks (SEUF-CMA), if for all PPT adversaries F the advantage
Advseuf-cma

SIG,F (𝜅, 𝑞) is negligible. If 𝑞 = 1 then SIG is called as a SEUF-
CMA secure OTS scheme.

Collision-Resistant Hash Functions. Let CRH :KCRH×MCRH
→ YCRH be a family of keyed-hash functions where KCRH is the

key space,MCRH is the message space and YCRH is the hash value

space. The public key ℎ𝑘CRH ∈ KCRH defines a hash function,

denoted by CRH(ℎ𝑘CRH, ·). On input a message𝑚 ∈ MCRH, this

function CRH(ℎ𝑘CRH,𝑚) generates a hash value 𝑦 ∈ YCRH. When

the hash key ℎ𝑘CRH is obvious from the context, we write CRH(𝑚)
for CRH(ℎ𝑘CRH,𝑚).

Definition 2. For a hash function CRH : KCRH × MCRH →
YCRH and an adversaryH , we define the following experiment:

EXPCRHCRH,F (𝜅) : ℎ𝑘CRH
$← KCRH; (𝑚,𝑚′) ← F (ℎ𝑘CRH); Return

1, if (𝑚,𝑚′) ∈ MCRH and CRH(𝑚) = CRH(𝑚′); Output 0
otherwise.

We define the advantage ofF in the above experiment asAdvCRHCRH,H
(𝜅) := Pr[EXPCRHCRH,H (𝜅) = 1] .We say thatCRH is collision-resistant

if for all PPT adversaryH the advantage AdvCRHCRH,H (𝜅) is negligible.

Pseudo-RandomFunctions.Wedenote byPRF : KPRF×DPRF →
RPRF a pseudo-random function family, where KPRF is the key

space, DPRF is the domain and RPRF is the range of PRF for secu-
rity parameter 𝜅. Let PList be a list to store the messages queried

in the PRF oracle FN(𝑘, 𝑥) which just returns PRF(𝑘, 𝑥).
Definition 3. Given a PRF : KPRF × DPRF → RPRF and an

adversary B = (B1,B2), we define the following experiment:

EXPIND-CMA
PRF,B (𝜅,𝑞) : 𝑏 $← {0, 1}, 𝑘 $← KPRF ; (𝑥∗, 𝑠𝑡 ) ← BFN(𝑘,·)

1
, 𝑠 .𝑡 . 𝑥∗ ∉ PList;

if 𝑥 ∈ PList then return a failure ⊥ ; 𝑉 ∗
1
:= PRF(𝑘, 𝑥∗),𝑉 ∗

0

$← RPRF ; 𝑏′ ←
BFN(𝑘,·)
2

(𝑠𝑡,𝑉 ∗
𝑏
) ; If 𝑏 = 𝑏′ then return 1; Otherwise return 0;

Wedefine the advantage ofB in the above game as:AdvIND-CMA
PRF,B (𝜅, 𝑞)

:=

���Pr[EXPIND-CMA
PRF,B (𝜅, 𝑞) = 1] − 1

2

���, where𝑞 is the numberFN queries
that can be asked by B. The pseudo-random function family PRF
is said to be a secure, if for all PPT adversaries B the advantage
AdvIND-CMA

PRF,B (𝜅, 𝑞) is negligible.

3 SECURITY MODEL
In this section, we define a security model for mutual authentication

with identity fraud detection (MA-IFD) protocols, which is adapted

from [1, 7, 26]. In particular, we formulate two security properties

of MA-IFD protocols, including mutual authentication (MA) and

identity fraud detection (IFD).

Execution Environment. Let 𝑢, 𝑣, 𝑑 ∈ N be positive integers. We

consider an environment with multiple parties that include𝑢 clients
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and 𝑣 authentication servers, where𝑢 ≥ 𝑣 ≥ 2.We assume that each

client has a unique identity C and each server is uniquely identified

by an identity S. We will denote with ID the general identity for

a party such that ID ∈ {C, S}. Each party ID𝑖 may carry out at

most 𝜌 ∈ N sessions that are simulated by a set of oracles {Π𝑠ID𝑖
:

𝑖 ∈ [ℓ], 𝑠 ∈ [𝜌]}, where ℓ = 𝑢 and 𝜌 = 𝑑 if ID𝑖 is client, otherwise
ℓ = 𝑣 and 𝜌 = 𝑢 ·𝑣 ·𝑑+𝑣 ·𝑑 . We assume that an oracle would terminate

a session with acceptance if and only if it has sent or received the

last protocol message and all received messages are valid according

to the protocol specification; otherwise it would terminate with

rejection. Meanwhile, each client can only sequentially execute

the protocol, i.e., the 𝑠 + 1-th oracle can be activated if and only

if the 𝑠-th oracle of that party is terminated. The authentication

server S can only sequentially run oracles with a specific client

but execute oracles with different clients concurrently. That is, Π𝑠S𝑖
and Π𝑡S𝑗

can run simultaneously with a different communication

partner.
2
For entity authentication purpose, we assume that each

party has a secret/public key pair (𝑠𝑘, 𝑝𝑘) which is evolvable (so

that each oracle may have a distinct secret/public key pair), but

we do not require the client and the authentication server has the

same type of secret/public key pair, e.g., the authentication server’s

secret/public key pair (𝑠𝑘S, 𝑝𝑘S) may have many sub-secret/public

key pairs each of which is used to authenticate itself to a specific

client. Each oracle can have access to its own secret key, all public

keys of other parties, and any other public information. Moreover,

each oracle Π𝑠ID maintains a list of independent internal state

variables including:

• Φ𝑠ID – execution-state Φ𝑠ID ∈ {accept, reject};
• pid𝑠ID – identities of the communication partners;

• 𝑇 𝑠ID – messages orderly sent and received by Π𝑠ID .
Here we review a notion regarding the partnership of two oracles

during online interaction. We denote with PTF : (ID𝑖 , 𝑠, pid𝑠ID𝑖
,

𝑇 𝑠ID𝑖
) → (ID 𝑗 , 𝑡) a partner function [7] which takes input the

internal states pid𝑠ID𝑖
and 𝑇 𝑠ID𝑖

of an oracle Π𝑠ID𝑖
, and outputs

its partner oracle (session) Π𝑡ID 𝑗
, such that ID 𝑗 ∈ pid𝑠ID𝑖

. We

realize the partner function PTF which outputs (ID 𝑗 , 𝑡) if and
only if all the following conditions hold: i) both Π𝑠ID𝑖

and Π𝑡ID 𝑗

have sent their last protocol message without rejection; ii) ID 𝑗 ∈
pid𝑠ID𝑖

and ID𝑖 ∈ pid𝑡ID 𝑗
; iii) 𝑇 𝑠ID𝑖

⊆ 𝑇 𝑡ID 𝑗
or 𝑇 𝑡ID 𝑗

⊆ 𝑇 𝑠ID𝑖
;

iii) Π𝑡ID 𝑗
is the unique oracle satisfying all above conditions.

Adversarial Model. We define an active adversary A as a proba-

bilistic polynomial time (PPT) algorithm which can ask the follow-

ing queries.

• Send(ID𝑖 , 𝑠,𝑚): A can use this query to send any message𝑚

to an initialized oracle Π𝑠ID𝑖
. The oracle will respond to the

next message 𝑚∗ (if any) to be sent according to the protocol

specification and its internal states.

• Corrupt(ID𝑖 ): This query returns the current secret key 𝑠𝑘ID𝑖

to A. We say that the party ID𝑖 submitted to this query is

corrupted. Once a party ID𝑖 is corrupted, no oracle of ID𝑖 will
be initialized any more.

2
These restrictions are required by our OTS public key evolving scenario.

Security Definitions. In the following, we formulate the secu-

rity properties for mutual authentication protocols, and, especially

for server identity fraud detection. To formulate identity fraud

detection, we first define a class of clients that are deceived by a

compromised authentication server.

Deceived Clients. We say a client C𝑖 is deceived if there is an oracle

Π𝑠C𝑖
that accepts without a partner oracle at the uncorrupted client

C𝑗 ∈ pid𝑠C𝑖
(if any) which will be called as impersonated client. This

issue also implies an identity fraud event.

Direct Delegator. We say an authentication server S𝑗 is a direct

delegator for C𝑖 in an oracle Π𝑠C𝑖
if S𝑗 ∈ pid𝑠C𝑖

and S𝑗 is supposed
to directly verify the authentication proof (e.g., a signature) of C𝑖 .

For security definition, we first define a security experiment

that is played between an adversary A and a challenger C based

on an MA-IFD protocol Σ. Let MP be a variable denoting one of

the security properties in {MA,MA-IFD}, where MA is mutual

authentication, and MA-IFD is mutual authentication with (server)

identity fraud detection.

Security Experiment EXPΣ,A (𝑞, 𝜅,MP): the security experiment

is represented as a game between a challenger C and an adversary

A based on a target AKA protocol Σ, where the following steps

are performed: i) Setup: C initializes the execution environment

by realizing the oracles {Π𝑠C𝑖
: 𝑖 ∈ [𝑢], 𝑠 ∈ [𝑑]} for clients and

{Π𝑡SID𝑗
: 𝑗 ∈ [𝑣], 𝑡 ∈ [2𝑢 · 𝑑]} for authentication servers. C returns

all identities and public keys to A; ii Query Phase: A may issue

a polynomial number of Send and Corrupt queries; iii) Finaliza-
tion:A terminates the game and outputs a tuple (ID∗𝑖 , 𝑠∗, 𝑡∗). The
experiment outputs 1 if and only if Π𝑠

∗

ID∗𝑖
accepts and one of the

following conditions is held:

• C1: MP ∈ {MA,MA-IFD}, and all parties in pid𝑠
∗

ID∗𝑖
are uncor-

rupted, and there is a party ID 𝑗 ∈ pid𝑠
∗

ID∗𝑖
such that ID 𝑗 has

no unique partner oracle to Π𝑠
∗

ID∗𝑖
;

• C2:MP = MA-IFD and ID∗𝑖 = C∗
𝑖
, and all the following condi-

tions are satisfied: i) A only asked 𝑞 times Corrupt query to au-

thentication servers; ii) C∗
𝑖
is deceived in Π𝑡

∗

ID∗𝑖
such that 𝑡∗ < 𝑠∗;

iii) C∗
𝑖
’s direct delegator S𝑐 ∈ pid𝑠

∗

C∗
𝑖

is not corrupted and S𝑐 has

a partner oracle Π𝑤S𝑐
to Π𝑠

∗

C∗
𝑖

, and the other client C𝑗 ∈ pid𝑡
∗

ID∗𝑖
is

not corrupted before Π𝑤S𝑐
accepts.

3

Definition 4 (MA-IFD Security). We define the advantage of
an adversaryA against a MA-IFD protocol Σ with parameter 𝑞 < 𝑣 as
AdvΣ,A (𝑞, 𝜅,MP) := Pr[EXPΣ,A (𝑞, 𝜅,MP) = 1]. We say that MA-
IFD protocol Σ is secure, if for all PPT adversaries A, the advantage
AdvΣ,A (𝑞, 𝜅,MP) is negligible.

4 A MUTUAL AUTHENTICATION
FRAMEWORKWITH IDENTITY FRAUD
DETECTION

In this section, we will introduce a new authentication framework

that can provide identity fraud detection (IFD) capability. We start

3
This IFD rule indicates that the honest authentication server S𝑐 fails to identify that

C∗𝑖 is deceived.
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with the construction for two-party mutual authentication (2MA),
which relies on both PRF and OTS. The proposed 2MA can provide

weak client identity fraud detection. The ‘weak’ means that the iden-

tity fraud event is caused by outsider attackers who compromise the

authentication keys without controlling the victim’s device. Next,

we show how to generically leverage on the proposed 2MA proto-

col as a building block to construct a MA-IFD protocol 4MA that

can provide strong server identity fraud detection (i.e., even if the

compromised server is an insider attacker which takes control of

the server). OurMA-IFD protocol 4MA involves four parties includ-

ing two clients and two authentication servers (AS) for simplicity.

Each client’s authentication is outsourced to an authentication

server. In our protocol constructions, we include three standard

building blocks: i) a one-time signature scheme OTS = (OTS.Gen,
OTS.Sign, OTS.Vfy); ii) a regular (multiple-time) signature scheme

SIG = (SIG.Gen, SIG.Sign, SIG.Vfy); iii) a collision-resistant hash
function CRH which has a random hash key ℎ𝑘CRH

$← KCRH; and

iv) a pseudo-random function family PRF.

4.1 Two-party Mutual Authentication with
Weak Identity Fraud Detection

Design Rationale. Our 2MA protocol is adapted from the tradi-

tional challenge-response paradigm with several important modi-

fications. Essentially, we combine symmetric key-based PRF with
asymmetric key-basedOTS for authentication. First, the pre-shared
symmetric key can be compromised from either key sharer, so it is

hard to identify the party who leaks the key. To mitigate the draw-

back of symmetric key-based authentication and achieve identity

fraud detection, we leverage OTS for authentication that each OTS

key pair needs to be updated to a new one in each session. If the

OTS key update procedure is abnormal, then there must be some

identity fraud events.

Since the OTS secret key can be used only one-time, we adopt

a cached signature-chain technique to update the OTS public key.

Specifically, a party commits its next (𝑛𝑥) OTS public key in the

signature generated based on the current OTS secret key, so that the

OTS public keys of a party are chained along with the generation of

signatures. In particular, the transmitted signatures may be lost due

to network failures. Each party should cache the signature relevant

data (e.g., the public key used to verify the signature and sign

hashed message) until it is verified. A party can send its cached data

for verification in the next session. That is, the current unverified

public key of a client can be validated by checking whether there

is a valid signature-chain starting from using the secret key of the

last verified public key (see more details in Algorithm 1). To track

the protocol executions, the authentication server must record the

transcript of protocol messages in a session, which is used later for

identity fraud detection. According to the recorded transcript and

the evolving OTS public key, a client can identify whether it has

been impersonated before.

In practice, an adversary who eavesdrops on the network may

disrupt the communication so that the cached signature-chain may

grow very fast on the client-side. To deal with this problem, we

rely on the symmetric key-based authentication to guarantee that

network adversary cannot manipulate the exchanged messages

(including nonce and one-time signatures). Meanwhile, the result

of symmetric key-based authentication can help a party identify

the key compromise events. Namely, the proposed protocol can

ensure that only the compromised party leads to its communication

partner’s signature-chain being over-long.

Protocol Description. We let 2MA(ID𝑎, S𝑐 ,AIID𝑎
,AIS𝑐 ,ID𝑎

)
denote a protocol instance of our two-party MA protocol executed

between two parties ID𝑎 and S𝑐 with auxiliary inputs AIID𝑎

and AIS𝑐 ,ID𝑎
from them respectively. Each execution of 2MA out-

puts the protocol transcript 𝑇ID𝑎
and 𝑇S𝑐 ,ID𝑎

from the view of

ID𝑎 and S𝑐 respectively, where ID𝑎 can be either client or server.

Here we mainly depict the protocol from the view of the client, i.e.,

ID𝑎 = C𝑎 for instance. As for ID𝑎 = S𝑎 , the protocol execution
is similar, but no OTS public key update is required since both par-

ties will use long-term keys for authentication. We denote by ast ∈
{No-Client-Partner,Client-Partner-Auth} the authentication asser-
tion issued by an authentication server, where No-Client-Partner

means there is no partnered client, and Client-Partner-Auth means

the partner’s identity is authenticated. For 2MA, ast is always

No-Client-Partner. If ast = No-Client-Partner, then the commu-

nication entities include the client and its direct delegator. Let

R𝑁 = {0, 1}ℓ𝑟 be a nonce space, where ℓ𝑟 is the bit-length deter-

mined by 𝜅.

We describe the proposed two-party protocol 2MA as follows.

Parties. In our construction, we consider that there are 𝑢 clients

which could be either users or devices (e.g., programmable logic

controller), and 𝑣 authentication servers (AS) (which form a pool).

Each client is identified by a unique identifier C𝑎 for 𝑎 ∈ [𝑢], and
each authentication server has an identity S𝑐 for 𝑐 ∈ [𝑣]. For the
IFD purpose, we will let these authentication servers work in turns

for a client (as mentioned in Section 1).

Setup. To track the OTS public key update procedure, we assume

each party exploits a queue data structure called ‘SCache’, such that
each item in this list is a tuple (ID𝑎, 𝑝𝑘𝑜𝑡𝑠 , ℎ, 𝑝𝑘𝑜𝑡𝑠,𝑛𝑥 , 𝜎), where
𝜎 := OTS.Sign(𝑠𝑘𝑜𝑡𝑠 , ℎ | |𝑝𝑘𝑜𝑡𝑠,𝑛𝑥 ) is a signature of the hashed mes-

sage ℎ concatenating with the public key 𝑝𝑘𝑜𝑡𝑠,𝑛𝑥 , 𝑝𝑘𝑜𝑡𝑠 is the

public key used for verifying the current signature, and ID𝑎 is the

party which is supposed to verify the signature (i.e., the intended

communication partner of the owner of 𝑝𝑘𝑜𝑡𝑠 ). We assume that an

element can be only popped up from the queue’s head and pushed

into the tail of the queue.

Let ClearSC(𝑝𝑎𝑟𝑚, SCache) be a function that takes as input a

cache SCache and a parameter 𝑝𝑎𝑟𝑚 ∈ (𝑝𝑘𝑜𝑡𝑠 ,ID𝑎), and it does

the following steps: i) If 𝑝𝑎𝑟𝑚 is a public key 𝑝𝑘𝑜𝑡𝑠 , then it deletes

all tuples before the one containing 𝑝𝑘𝑜𝑡𝑠 from SCache; ii) If 𝑝𝑎𝑟𝑚
is an identity ID𝑎 , it deletes all tuples identified by ID𝑎 from

SCache.
The authentication server S𝑐 first generates a set of pre-shared

symmetric keys {𝐾S𝑐 ,C𝑎
}𝑎∈[𝑢 ] and securely distributes them to the

corresponding client over a secure channel, e.g., the client C𝑎 has

the key𝐾S𝑐 ,C𝑎
. Second, S𝑐 generates OTS secret/public pairs, which

are used for authenticating itself to each client, i.e., for 𝑎 ∈ [𝑣] it
runs (𝑠𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

, 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
) $← OTS.Gen(1𝜅 , 𝑟𝑠S𝑐 ,C𝑎

), where 𝑟𝑠S𝑐 ,C𝑎

$←
R𝑠 . Meanwhile, the public key 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

will be sent to the client C𝑎 .

Third, S𝑐 generates a long-term secret/public pair (𝑠𝑘𝑠𝑖𝑔S𝑐 , 𝑝𝑘
𝑠𝑖𝑔

S𝑐
) $←

Session 1:  CPS Formalization and Protocols  CPSS ’21, June 7, 2021, Virtual Event, Hong Kong

21



SIG.Gen(1𝜅 ). In particular, the authentication server S𝑐 would keep
variables:

• {SCacheS𝑐 ,C𝑎
}𝑎∈[𝑢 ] : a set of queues, each of which stores the

one-time signature relevant data of S𝑐 in sessions communicating

with the client C𝑎 . Each used OTS public key of the signer S𝑐 ,
which is not checked by the intended verifier C𝑎 (i.e., without

receiving the acknowledgement from C𝑎), will be stored into the

corresponding SCacheS𝑐 ,C𝑎
.

Each clientC𝑎 initiates the protocol by generating a secret/public

pair (𝑠𝑘𝑜𝑡𝑠C𝑎
, 𝑝𝑘𝑜𝑡𝑠C𝑎

) $← OTS.Gen(1𝜅 , 𝑟𝑠C𝑎
), where 𝑟𝑠C𝑎

$← R𝑠 . C𝑎
initializes and locally keeps the following variables:

• AS_PKC𝑎
= {𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

}𝑐∈[𝑣 ] : a set of authentication servers’s OTS
public keys. Each public key will be used to verify the signature

from the corresponding authentication server S𝑐 .
• {C𝑎_S𝑐 .𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒}𝑐∈[𝑣 ] : a set of variables regarding available

status of authentication servers, such that

C𝑎_S𝑐 .𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ∈ {0, 1}, where 1 denotes that 𝐴𝑆𝑎 is available
for the client C𝑎 , and 0 otherwise. These variables are initially set
to be 1. Note that whenC𝑎_S𝑐 .𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 0, another partyC𝑦 ≠

C𝑎 can still choose S𝑐 for authentication if C𝑦_S𝑐 .𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 1.

• ASQueueC𝑎
: a queue that stores the identities of direct authenti-

cation servers, which are currently selected to do both authenti-

cation and identity fraud detection for C𝑎 . We implicitly assume

that the queue is initialized with size 𝑧 = |ASQueueC𝑎
| by a

queue initialization algorithm, and z available authentication

servers’ identities are pushed into this queue initially.

• IFDCacheC𝑎
: a queue that stores the information regarding the

OTS key update procedure, which is used for identity fraud

detection. Each record in IFDCache is a tuple in the form of

(S𝑐 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
, ℎS𝑐 ,C𝑎

, 𝜎S𝑐 ,C𝑎
, 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

, SCacheS𝑐 ,C𝑎
, astS𝑐 ,C𝑎

), whe-
re S𝑐 ∈ ASQueueC𝑎

, and 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
is the public key used to verify

the received signature 𝜎S𝑐 ,C𝑎
, ℎS𝑐 ,C𝑎

is the signed hash message,

and 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

is supposed to be the next OTS public key of S𝑐 for
authenticating to C𝑎 .
• SCacheC𝑎

: OTS signature relevant data kept by C𝑎 , which has

the data structure described above.

In addition, we assume that there is a public database PDB,
such that each record in PDB is a tuple (S𝑐 , ℎ,𝑇 , 𝜎S𝑐 ), where S𝑐
is the authentication server which submitted the record, ℎ is a

hash value related to 𝑇 , 𝑇 is a transcript including all protocol

messages sent and received by S𝑐 in a session, and 𝜎S𝑐 is a signature

𝜎S𝑐 := SIG.Sign(𝑠𝑘𝑠𝑖𝑔S𝑐 ,𝑇 ). We assume that an authentication server

inserts new items into PDB.
Authentication. The online authentication steps are shown in

Figure 2. Two parties would first generate two new OTS public

keys respectively, and exchange two nonces (𝑁C𝑎
, 𝑁S𝑐 ,C𝑎

), where
S𝑐 is the last the authentication server in the queue ASQueueC𝑎

.

Meanwhile, S𝑐 should authenticate the identities of participants and
exchange nonces with a message authentication code A1 generated
by PRF based on the pre-shared key 𝐾S𝑐 ,C𝑎

, which convinces the

client regarding the existence of S𝑐 in the corresponding session.

Next, in addition to signing the protocol transcript of messages

exchanged, the client C𝑎 would sign the data in IFDCacheC𝑎
and

SCacheC𝑎
which include the used OTS public keys from both client

and authentication servers respectively. Namely, C𝑎 generates the

Algorithm 1: SChainVfy: Signature-Chain Verification

Input: ID, 𝑝𝑘, 𝜎,ℎ, 𝑝𝑘𝑛𝑥 , SCache
Output: 0, 1
𝐿 := |SCache |
if 𝑝𝑘 equals to current unused one recorded either in PDB or locally by a
client then

goto Current

if ID = C and 𝑝𝑘1 ∈ SCache is not recorded locally then
return 0 \\ 𝑝𝑘1 is the first public key of ID in SCache

if ID = S and 𝑝𝑘1 ∈ SCache is not recorded in PDB then
return 0

for 𝑡 = 1 to 𝐿 do
𝑣𝑟 := SIG.Vfy(𝑝𝑘𝑡 , ℎ𝑡 | |𝑝𝑘𝑛𝑥,𝑡 , 𝜎𝑡 ) \\ 𝑡 is the item index of SCache

if 𝑝𝑘𝑛𝑥,𝑡 ∈ PDB and 𝑠𝑘𝑛𝑥,𝑡 has been used to sign ℎ′ s.t. ℎ′ ≠ ℎ𝑡 then
𝑣𝑟 := 0 \\ i.e., there is valid signature related to ℎ′;

if 𝑣𝑟 = 0 then
return 0

Current: 𝑣𝑟 := SIG.Vfy(𝑝𝑘,ℎ | |𝑝𝑘𝑛𝑥 , 𝜎)
return 𝑣𝑟

signature 𝜎C𝑎
:= OTS.Sign(𝑠𝑘𝑜𝑡𝑠C𝑎

, ℎC𝑎
| |𝑝𝑘𝑜𝑡𝑠,𝑛𝑥C𝑎

), where ℎC𝑎
:=

CRH(𝑇C𝑎
) and 𝑇C𝑎

:= C𝑎 | |S𝑗 | |𝑁C𝑎
| |AIC𝑎

| |𝑁S𝑐 ,C𝑎
| |AIS𝑐 ,C𝑎

| |A1 | |
𝑝𝑘𝑜𝑡𝑠C𝑎

| |SCacheC𝑎
| |IFDCacheC𝑎

| |𝑝𝑘𝑜𝑡𝑠,𝑛𝑥C𝑎
| |𝑝𝑘𝑜𝑡𝑠,𝑛𝑥S𝑐 ,C𝑎

. The clientwou-

ld also record the tuple (𝑝𝑘𝑜𝑡𝑠C𝑎
, ℎC𝑎

, 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
C𝑎

, 𝜎C𝑎
) into SCacheC𝑎

(in case of any message loss), so that C𝑎 can show the OTS public

key evolving procedures recorded in SCacheC𝑎
next time. The sig-

nature 𝜎C𝑎
should also be protected by a message authentication

code A2 generated based on 𝐾S𝑐 ,C𝑎
and PRF. Then, the signature

𝜎C𝑎
, C𝑎 ’s current public key 𝑝𝑘𝑜𝑡𝑠C𝑎

, the client cached signature rele-

vant data set SCacheC𝑎
, the cached servers’ signature relevant data

set IFDCacheC𝑎
, its next (nx) public key 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
C𝑎

, the latest OTS

public key of 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
stored at C𝑎 , and the message authentication

code A2, are sent to the authentication server S𝑐 .
Upon receiving themessage𝑚3, S𝑐 would first check themessage

authentication code A2. If A2 is valid, then S𝑐 runs the signature-
chain verification algorithm SChainVfy which is defined by Al-

gorithm 1, to verify the signature based on the data cached in

SCacheC𝑎
. If C𝑎 ’s signature is valid and the corresponding public

key is recorded correctly, then SChainVfy returns 1. After this, S𝑐
would sign the hash of the protocol transcript 𝑇S𝑐 ,C𝑎

= 𝑇C𝑎
| |𝜎C𝑎

| |
𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

| |SCacheS𝑐 ,C𝑎
| |𝑝𝑘𝑜𝑡𝑠,𝑛𝑥S𝑐 ,C𝑎

| |astS𝑐 ,C𝑎
. Next, S𝑐 would clear its

signature cache by running ClearSC(𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

′
, SCacheS𝑐 ,C𝑎

accord-

ing to the public key 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

′
stored at C𝑎 , i.e., all tuples before the

one containing 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

′
will be deleted from SCacheS𝑐 ,C𝑎

. Further-

more, S𝑐 would push the tuple (𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
, ℎS𝑐 ,C𝑎

, 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

, 𝜎S𝑐 ,C𝑎
)

into SCacheS𝑐 ,C𝑎
, and update its current OTS public key 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

to the next one 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

. Finally, 𝜎S𝑐 ,C𝑎
and its relevant message

authentication code A3, and the messages in 𝑇S𝑐 ,C𝑎
which are not

known by C𝑎 are sent to C𝑎 in𝑚4. Upon receiving𝑚4, the client

C𝑎 verifies A3 and 𝜎S𝑐 ,C𝑎
analogously.

Post-acceptance. This phase is shown in Figure 2. For identity

fraud detection, we need first to set the available status of S𝑐 at C𝑎
to be 0, i.e., C𝑎_S𝑐 .𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 := 0. Before confirming that S𝑐 is not
a cheater, it should be no longer selected to authenticate for C𝑎 .
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C𝑎
(𝐾S𝑐 ,C𝑎 , 𝑠𝑘

𝑜𝑡𝑠
C𝑎

, 𝑝𝑘𝑜𝑡𝑠C𝑎
, 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

′
)

S𝑐 (S𝑐 = ASQueueC𝑎 [𝑧 ])
(𝐾S𝑐 ,C𝑎 , 𝑠𝑘

𝑜𝑡𝑠
S𝑐 ,C𝑎

, 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
)

Online Authentication

𝑟𝑠C𝑎
$← R𝑠 𝑟𝑠S𝑐 ,C𝑎

$← R𝑠
(𝑠𝑘𝑜𝑡𝑠,𝑛𝑥C𝑎

, 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
C𝑎

) ← OTS.Gen(1𝜅 , 𝑟𝑠C𝑎 ) (𝑠𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
, 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

) ← OTS.Gen(1𝜅 , 𝑟𝑠S𝑐 ,C𝑎 )

𝑁C𝑎
$← R𝑁 𝑁S𝑐 ,C𝑎

$← R𝑁
𝑚1 := C𝑎 | |S𝑐 | |𝑁C𝑎 | |AIC𝑎

𝑚
1−−−−−−−−→

A1 := PRF(𝐾S𝑐 ,C𝑎 ,𝑚1 | |𝑁S𝑐 ,C𝑎 | |AIS𝑐 ,C𝑎 )
Reject if A1 ≠ PRF(𝐾S𝑐 ,C𝑎 ,𝑚1 | |𝑁S𝑐 ,C𝑎 | |AIS𝑐 ,C𝑎 )

𝑚
2←−−−−−−−− 𝑚2 := 𝑁S𝑐 ,C𝑎 | |AIS𝑐 ,C𝑎 | |A1

𝑇C𝑎 :=𝑚1 | |𝑚2 | |𝑝𝑘𝑜𝑡𝑠C𝑎
| |SCacheC𝑎 | |IFDCacheC𝑎 | |𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
C𝑎

| |𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
′

ℎC𝑎 := CRH(𝑇C𝑎 )
𝜎C𝑎 := OTS.Sign(𝑠𝑘𝑜𝑡𝑠C𝑎

, ℎC𝑎 | |𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
C𝑎

)
A2 := PRF(𝐾S𝑐 ,C𝑎 , 𝜎C𝑎 )

𝑚3 := 𝜎C𝑎 | |𝑝𝑘𝑜𝑡𝑠C𝑎
| |SCacheC𝑎 | |IFDCacheC𝑎 | |𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
C𝑎

| |𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
′ | |A2

𝑚
3−−−−−−−−→ Reject if A2 ≠ PRF(𝐾S𝑐 ,C𝑎 , 𝜎C𝑎 )

(𝑝𝑘𝑜𝑡𝑠C𝑎
, ℎC𝑎 , 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
C𝑎

, 𝜎C𝑎 )
push

→ SCacheC𝑎 Reject if SChainVfy(S𝑐 , 𝑝𝑘𝑜𝑡𝑠C𝑎
, 𝜎C𝑎 , ℎC𝑎 , 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
C𝑎

, SCacheC𝑎 ) ≠ 1

𝑝𝑘𝑜𝑡𝑠C𝑎
:= 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
C𝑎

𝑇S𝑐 ,C𝑎 = 𝑇C𝑎 | |𝜎C𝑎 | |𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
| |SCacheS𝑐 ,C𝑎 | |𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

| |astS𝑐 ,C𝑎
ℎS𝑐 ,C𝑎 := CRH(𝑇S𝑐 ,C𝑎 )
𝜎S𝑐 ,C𝑎 := OTS.Sign(𝑠𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

, ℎS𝑐 ,C𝑎 | |𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

)
A3 := PRF(𝐾S𝑐 ,C𝑎 , 𝜎S𝑐 ,C𝑎 )

Reject if A3 ≠ PRF(𝐾S𝑐 ,C𝑎 , 𝜎S𝑐 ,C𝑎 )
𝑚

4←−−−−−−−− 𝑚4 := astS𝑐 ,C𝑎 | |𝜎S𝑐 ,C𝑎 | |𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
| |SCacheS𝑐 ,C𝑎 | |𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

| |A3
Reject if SChainVfy(C𝑎 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

, 𝜎S𝑐 ,C𝑎 , ℎS𝑐 ,C𝑎 , 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

, SCacheS𝑐 ,C𝑎 ) ≠ 1 ClearSC(𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
′
, SCacheS𝑐 ,C𝑎 )

(𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
, ℎS𝑐 ,C𝑎 , 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

, 𝜎S𝑐 ,C𝑎 )
push

→ SCacheS𝑐 ,C𝑎
𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

:= 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

accept accept

Post-acceptance

C𝑎_S𝑐 .𝐴𝑣𝑎𝑙𝑖𝑎𝑏𝑙𝑒 := 0 𝑇S𝑐 ,C𝑎 = 𝑇S𝑐 ,C𝑎 | |𝜎S𝑐 ,C𝑎
(S𝑐 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

, ℎS𝑐 ,C𝑎 , 𝜎S𝑐 ,C𝑎 , 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

, SCacheS𝑐 ,C𝑎 , 𝜎S𝑐 := SIG.Sign(𝑠𝑘𝑠𝑖𝑔S𝑐
,𝑇S𝑐 ,C𝑎 )

astS𝑐 ,C𝑎 )
push

→ IFDCacheC𝑎 store (S𝑐 , ℎS𝑐 ,C𝑎 ,𝑇S𝑐 ,C𝑎 , 𝜎S𝑐 ) into PDB
S𝑦

pop

← ASQueueC𝑎 [1]
C𝑎_S𝑦 .𝐴𝑣𝑎𝑙𝑖𝑎𝑏𝑙𝑒 := 1

(S𝑦 , 𝑝𝑘𝑜𝑡𝑠S𝑦,C𝑎
, ℎS𝑦,C𝑎 , 𝜎S𝑦,C𝑎 , 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑦,C𝑎

, SCacheS𝑦,C𝑎 )
pop

← IFDCacheC𝑎
𝑝𝑘𝑜𝑡𝑠S𝑦,C𝑎

:= 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥
S𝑦,C𝑎

Delete (ℎS𝑦,C𝑎 , 𝜎S𝑦,C𝑎 , SCacheS𝑐 ,C𝑎 )
ClearSC(S𝑦 , SCacheC𝑎 )

Randomly select S𝑥 , s.t. C𝑎_S𝑥 .𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 1

S𝑥
push

→ ASQueueC𝑎 [1]

Figure 2: A Two-party MA Protocol from OTS.

C𝑎 would also push the tuple (S𝑐 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
, ℎS𝑐 ,C𝑎

, 𝜎S𝑐 ,C𝑎
, 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

,

SCacheS𝑐 ,C𝑎
) into IFDCacheC𝑎

, which reflects the usage of S𝑐 ’s se-
cret key. The contents of IFDCacheC𝑎

will be checked by other au-

thentication servers later. Meanwhile, C𝑎 would pop up the first au-
thentication server S𝑦 and delete all its related data in IFDCacheC𝑎

and SCacheC𝑎
since its cached data must have been verified by 𝑧−1

authentication servers (if no one has reported the identify fraud

event about it). Eventually, C𝑎 randomly selects an authentication

server S𝑥 whose available status C𝑎_S𝑥 .𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 1.

On the server side, S𝑐 is supposed to faithfully store its pro-

tocol transcript 𝑇S𝑐 ,C𝑎
into PDB together with a signature 𝜎S𝑐

that is generated based on its long-term secret key, i.e., the tuple

(S𝑐 ,𝑇S𝑐 ,C𝑎
, 𝜎S𝑐 ) is stored into PDB. Therefore, any other parties

(e.g., the next authentication server selected for authenticating C𝑎)
can check the honesty of S𝑐 (e.g., as done by Algorithm 2 which is

discussed later).

Weak Client Identity Fraud Detection. If the client C𝑎 ’s se-
cret keys (including OTS secret key and pre-shared key 𝐾S𝑐 ,C𝑎

) are

compromised by an attacker A, then A can impersonate C𝑎 . If

C𝑎 is impersonated but not controlled by A, then the most recent

OTS public recorded in PDB must be distinct to the one kept by

C𝑎 , which means that the real C𝑎 cannot be authenticated by an

authentication server anymore. In particular, if an uncorrupted au-

thentication server received a valid A2 but the underlying signature
𝜎C𝑎

(authenticated by A2) is invalid, then S𝑐 would know that C𝑎
must have been impersonated before. Similar detection approaches

can also be applied to the authentication server. However, the above

IFD approach can only resit outsider attackers who do not control

the device of a victim (either client or server). An attacker who

controls the victim’s device would not leave out any proof for IFD

(i.e., inconsistent OTS public key), because all OTS keys would be

updated and stored in the device faithfully by the attacker.

4.2 Delegated Mutual Authentication with
Strong Server Identity Fraud Detection

In this section, we focus on constructing a MA-IFD protocol 4MA
by generically leveraging 2MA, which can provide strong server

identity fraud detection.
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Design Rationale. In 4MA, the authentication between two clients
C𝑎 and C𝑏 are delegated by authentication servers S𝑐 and S𝑑 re-

spectively, so that the two-party mutual authentication protocol

instances 2MA(C𝑎, S𝑐 ,AIC𝑎
,AIS𝑐 ,C𝑎

), 2MA(S𝑐 , S𝑑 ,AIS𝑐 ,S𝑑 ,AIS𝑑 ,S𝑐 )
and 2MA(C𝑏 , S𝑑 ,AIC𝑏

,AIS𝑑 ,C𝑏
) are executed. Meanwhile, the 2MA

instance between client and authentication server is run based on

OTS, but the 2MA instance between two authentication servers

is run based on regular multiple-time signature scheme (without

SCache). Recall that, in 2MA, each party can specify auxiliary input

AI to run the protocol. Therefore, we can specifically define the

contents of auxiliary inputs to glue up the 2MA instances to eventu-

ally yield 4MA. Namely, we leverage on AI to convey the intended

partner’s identity and nonces generated in 2MA instances so that

each party can uniquely have a partner session at each intended

communication partner. Furthermore, we will add a few protocol

steps to achieve identity fraud detection capability.

Protocol Description. The setup and the post-acceptance proce-

dures are identical to that of 2MA. The protocol execution is shown

by Figure 3, and the protocol messages are listed in Table 1. In the

protocol execution of 4MA, we only slightly modify the timing of

the protocol messages of 2MA instances and the assertion variables

as follows:

• After first two protocol steps in 2MA(S𝑐 , S𝑑 ,AIS𝑐 ,S𝑑 ,AIS𝑑 ,S𝑐 ), two
authentication servers suspend to wait for the one-time signa-

tures and the relevant message authentication codes from the

clients respectively (before sending𝑚4). If a server received either

an invalid signature or invalid message authentication code from

the client, then it rejects the session 2MA(S𝑐 , S𝑑 ,AIS𝑐 ,S𝑑 ,AIS𝑑 ,S𝑐 ).
• If S𝑥 for 𝑥 ∈ {𝑐, 𝑑}, the corresponding party rejects the session

2MA(S𝑐 , S𝑑 ,AIS𝑐 ,S𝑑 ,AIS𝑑 ,S𝑐 ), then S𝑥 sets the authentication as-

sertion as astS𝑥 ,C𝑦
:= No-Client-Partner, whereC𝑦 for𝑦 ∈ {𝑎, 𝑏}

is the client that is directly delegated by S𝑥 ; Otherwise, S𝑥 sets

astS𝑥 ,C𝑦
:= Client-Partner-Auth.

• If S𝑐 happens to be equivalent to S𝑑 , then the session

2MA(S𝑐 , S𝑑 ,AIS𝑐 ,S𝑑 ,AIS𝑑 ,S𝑐 ) does not need to execute.

Strong Server Identity Fraud Detection. Our goal is to enable

a client to provide a ‘proof’ regarding any identity fraud event

that a compromised authentication server, which can be controlled

by attackers (e.g., malicious insiders), impersonated as the honest

client to communicate with another honest client. Recall that in

the post-acceptance phase, each authentication server should sign

and insert their protocol transcript into the public database PDB
so that all other authentication servers can verify the protocol ex-

ecutions later. Note that from the protocol transcript, any party

can ‘replay’ the corresponding 2MA instance. If the most recent

protocol transcript in PDB involving C𝑎 and S𝑐 is valid then the

up-to-date OTS public key 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
is recorded and valid as well.

We stress that the identity fraud cache IFDCacheC𝑎
can provide a

‘proof’ if C𝑎 is deceived by an authentication server before. Gen-

erally speaking, an honest authentication server can identify an

identity fraud event from IFDCacheC𝑎
by checking whether the

relevant transcript has been correctly recorded in PDB and the

sessions implied by the corresponding transcript have been faith-

fully executed (e.g., each session has a unique partner session).

We stress that the current OTS public key 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
of S𝑐 stored

at either the client C𝑎 must be checked by other 𝑧 − 1 authen-

tication servers in ASQueue before it can be used to verify the

next signature (i.e., after a successful OTS public key update in the

post-acceptance phase of 2MA). Among those 𝑧 − 1 authentication
servers, we assume that at least one of them is compromised, so that

the IFD works if and only if the adversaries corrupted at most 𝑧 − 2
servers. By applying our IFD procedure, the OTS public key 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

in a tuple (S𝑐 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
, ℎS𝑐 ,C𝑎

, 𝜎S𝑐 ,C𝑎
, 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

, SCacheS𝑐 ,C𝑎
) from

IFDCacheC𝑎
should exist in PDB as well, otherwise S𝑐 must have

behaved dishonestly. Similarly, the hash value of the protocol tran-

script, which involves the usage of 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
, should be recorded in

PDB if S𝑐 is honest. However, for a malicious S𝑐 which tries to im-

personate C𝑎 , it cannot write a valid protocol transcript involving

C𝑎 since without knowing C𝑎 ’s secret key S𝑐 is unable to generate

a valid (unforgeable) signature for executing the protocol. This is

also why we need the client to provide a proof.

To quickly identify a partner session, we let GetSID be a func-

tion which takes as input a transcript 𝑇S𝑐 ,C𝑎
, and outputs a session

identifier sid = C𝑎 | |C𝑏 | |S𝑐 | |S𝑑 | |𝑁C𝑎
| |𝑁C𝑏

| |𝑁S𝑐 ,C𝑎
| |𝑁S𝑐 ,S𝑑 | |𝑁S𝑑 ,S𝑏 ,

where the identities are sored in lexicographic order. If two sessions

recorded by transcripts 𝑇S𝑐 ,C𝑎
and 𝑇S𝑑 ,C𝑏

(respectively) are part-

nered then it must have that GetSID(𝑇S𝑐 ,C𝑎
) = GetSID(𝑇S𝑑 ,C𝑏

).
More specifically, to achieve identity fraud detection, when S𝑒 re-

ceives a valid signature fromC𝑎 , it runs the Algorithm 2which takes

as input IFDCacheC𝑎
, and output either a tuple (S𝑐 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

, ℎS𝑐 ,C𝑎
,

𝜎S𝑐 ,C𝑎
, 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥
S𝑐 ,C𝑎

, SCacheS𝑐 ,C𝑎
) related to an identity fraud event or

0 meaning that no identity fraud event is found. If an identity

fraud event is found, then the deceived client C𝑐 and the cheater

S𝑑 should stop working before they are fixed. Here, we send the

IFDCache along with the authentication (for simplicity), that may

eat some bandwidth for online authentication. But we stress that

IFDCache can be sent to the next intended authentication server

S𝑥 right after the last session is terminated and before the current

(newly updated) OTS key of the client is used. In the meantime, the

client should use the pre-shared key 𝐾S𝑥 ,C𝑎
to protect the integrity

of IFDCacheC𝑎
(based on a message authentication code scheme)

when transmitting it.
4
In this scenario, the client can even trigger

the identify fraud detection immediately after a session is done.

5 SECURITY ANALYSIS
5.1 Security of 2MA

Theorem 1. We assume that ℓ𝑟 ≤ ℓ𝑠 , the one-time signature OTS
is SEUF-CMA secure, the hash function CRH is collision-resistant,
the pseudo-random function family PRF is secure, and the size of
ASQueue has a size 𝑧 such that 3 ≤ 𝑧 ≤ 𝑣 . Then the proposed two-
partymutual authentication protocol 2MA is secure withAdv2MA,A (𝑧
− 2, 𝜅,MA) ≤ (3𝑢 ·𝑣 ·𝑑)

2

2
ℓ𝑠

+AdvCRHCRH,H (𝜅) +𝑢 · 𝑣 · Adv
IND-CMA
PRF,B (𝜅, 3𝑢 ·

𝑣 · 𝑑 + 𝑣 · 𝑑) + 2𝑢 · 𝑣 · 𝑑 · Advseuf-cma
OTS,F (𝜅, 1).

We prove this theorem via a sequence of games following [35].

In the proof, we first change the games to exclude the collision

4
We stress that only the use of the pre-shared key (without the OTS signature) is

enough to protect IFDCacheC𝑎 since if S𝑥 is honest (not compromised) then the

pre-shared key is uncompromised either. For a compromised S𝑥 , the integrity of

IFDCacheC𝑎 is useless.
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C𝑎 S𝑐 S𝑑 C𝑏

𝑇C𝑎

2MA(C𝑎,S𝑐 ,AIC𝑎 ,AIS𝑐 ,C𝑎 )←−−−−−−−−−−−−−−−−−−−→ 𝑇S𝑐 ,C𝑎
,

2MA(S𝑐 ,S𝑑 ,AIS𝑐 ,S𝑑 ,AIS𝑑 ,S𝑐 )←−−−−−−−−−−−−−−−−−−−−→ 𝑇S𝑑 ,S𝑐 ,
2MA(C𝑏 ,S𝑑 ,AIC𝑏 ,AIS𝑑 ,C𝑏 )←−−−−−−−−−−−−−−−−−−−→ 𝑇C𝑏

𝑇S𝑐 ,S𝑑 𝑇S𝑑 ,C𝑏

Figure 3: A MA-IFD Protocol 4MA from 2MA.

Table 1: Message Transcripts and Auxiliary Inputs.

Variables Contents

𝑇C𝑎 C𝑎 | |S𝑐 | |𝑁C𝑎 | |𝑁S𝑐 ,C𝑎 | |𝑝𝑘𝑜𝑡𝑠C𝑎
| |SCacheC𝑎

| |IFDCacheC𝑎 | |𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥

C𝑎
| |AIC𝑎 | |AIS𝑐 ,C𝑎

𝑇S𝑐 ,C𝑎 𝑇C𝑎 | |𝜎C𝑎 | |𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
| |SCacheS𝑐 ,C𝑎 | |𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥

S𝑐 ,C𝑎
𝑇S𝑐 ,S𝑑 S𝑐 | |S𝑑 | |𝑁S𝑐 ,S𝑑 | |𝑁S𝑑 ,S𝑐 | |AIS𝑐 ,S𝑑 | |AIS𝑑 ,S𝑐
𝑇S𝑑 ,S𝑐 𝑇S𝑐 ,S𝑑 | |𝜎S𝑐 ,S𝑑
𝑇C𝑏 C𝑏 | |S𝑑 | |𝑁C𝑏 | |𝑁S𝑑 ,C𝑏 | |𝑝𝑘

𝑜𝑡𝑠
C𝑏
| |SCacheC𝑏

| |IFDCacheC𝑏 | |𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥

C𝑏
| |AIC𝑏 | |AIS𝑑 ,C𝑏

𝑇S𝑑 ,C𝑏 𝑇C𝑏 | |𝜎C𝑏 | |𝑝𝑘
𝑜𝑡𝑠
S𝑑 ,C𝑏

| |SCacheS𝑑 ,C𝑏 | |𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥

S𝑑 ,C𝑏
AIC𝑎 C𝑏

AIS𝑐 ,C𝑎 𝑁C𝑏 | |S𝑑 | |𝑁S𝑑 ,S𝑐 | |𝑁S𝑑 ,C𝑏
AIS𝑐 ,S𝑑 C𝑎 | |𝑁C𝑎 | |𝑁S𝑐 ,C𝑎
AIS𝑑 ,S𝑐 C𝑏 | |𝑁C𝑏 | |𝑁S𝑑 ,C𝑏
AIC𝑏 C𝑎

AIS𝑑 ,C𝑏 𝑁C𝑎 | |S𝑐 | |𝑁S𝑐 ,S𝑑 | |𝑁S𝑐 ,C𝑎

Algorithm 2: IFDetection: Identity Fraud Detection

Input: IFDCacheC𝑎
Output: 0 or (S𝑐 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

, ℎS𝑐 ,C𝑎 , 𝜎S𝑐 ,C𝑎 , 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥

S𝑐 ,C𝑎
, SCacheS𝑐 ,C𝑎 )

𝑟𝑒𝑠 := ∅
while IFDCacheC𝑎 ≠ ∅ do

res:=(S𝑐 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎
, ℎS𝑐 ,C𝑎 , 𝜎S𝑐 ,C𝑎 , 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥

S𝑐 ,C𝑎
, SCacheS𝑐 ,C𝑎 ,

astS𝑐 ,C𝑎 )
pop

← IFDCacheC𝑎
if SChainVfy(S𝑐 , 𝑝𝑘𝑜𝑡𝑠S𝑐 ,C𝑎

, 𝜎S𝑐 ,C𝑎 , ℎS𝑐 ,C𝑎 , 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥

S𝑐 ,C𝑎
,

SCacheS𝑐 ,C𝑎 ) = 1 and ℎS𝑐 ,C𝑎 ∉ PDB then
goto IFfound

if ℎS𝑐 ,C𝑎 ∈ PDB then
Get𝑇S𝑐 ,C𝑎 ← PDB in terms of ℎS𝑐 ,C𝑎
sid∗ = GetSID(𝑇S𝑐 ,C𝑎 )
Parse (S𝑑 ,C𝑏 ) ∈ sid∗
Retrive𝑇S𝑑 ,C𝑏 ∈ PDB s.t. GetSID(𝑇S𝑐 ,C𝑎 ) = sid∗

if 𝑇S𝑑 ,C𝑏 is not found then
goto IFfound

else
Parse 𝑝𝑘𝑜𝑡𝑠C𝑏

, 𝜎C𝑏 , ℎC𝑏 , 𝑝𝑘
𝑜𝑡𝑠,𝑛𝑥

C𝑏
, SCacheC𝑏 ← 𝑇S𝑑 ,C𝑏

if ∄𝑇S𝑒 ,C𝑏 ∈ PDB s.t. S𝑒 ≠ S𝑑 and 𝑝𝑘𝑜𝑡𝑠C𝑏
∈ 𝑇S𝑒 ,C𝑏 then

goto IFfound

if SChainVfy(S𝑐 , 𝑝𝑘𝑜𝑡𝑠C𝑎
, 𝜎C𝑏 , ℎC𝑎 , 𝑝𝑘

𝑜𝑡𝑠,𝑛𝑥

C𝑎
,

SCacheC𝑎 ) = 0 then
goto IFfound

return 0

IFfound: return 𝑟𝑒𝑠

possibilities regarding either the nonce or the randomness used by

the OTS key generation. Meanwhile, the security of CRH ensures

that the signed hash value is collision-free with non-negligible

probability. Eventually, we show that the adversary cannot forge

the authentication messages generated by PRF and OTS. The full
proof of this theorem will be given in the full version of this paper.

5.2 Security of 4MA
Theorem 2. We assume that ℓ𝑟 ≤ ℓ𝑠 , both signature schemes OTS

and SIG are SEUF-CMA secure, the hash function CRH is collision-
resistant, and the size of ASQueue has a size 𝑧 such that 3 ≤ 𝑧 ≤ 𝑣 .
Then the proposedMA-IFD protocol 4MA is secure withAdv4MA,A (𝑧−
2, 𝜅,MA-IFD) ≤ (3𝑢 ·𝑣 ·𝑑)

2

2
ℓ𝑠−1 +2·AdvCRHCRH,H (𝜅)+2𝑢·𝑣 ·Adv

IND-CMA
PRF,B (𝜅, 3𝑢·

𝑣 ·𝑑 +𝑣 ·𝑑) +4𝑢 ·𝑣 ·𝑑 ·Advseuf-cma
OTS,F (𝜅, 1) +2𝑣 ·Advseuf-cma

SIG,F (𝜅, 2𝑢 ·𝑣 ·𝑑).

We divide adversaries into two categories to analyze the authen-

tication and key exchange respectively:

(1) Authentication-adversary can succeed in breaking theMA prop-

erty, i.e., condition 𝐶1 holds in the security experiment;

(2) IFD-adversary can fail the identity fraud detection, i.e., condition
𝐶2 holds in the security experiment.

To prove Theorem 2, we present two lemmas. Each analyzes one

of the security properties of the proposed protocol. Specifically,

Lemma 1 bounds the success probability 𝜖auth of authentication-

adversaries, and Lemma 2 bounds the success probability 𝜖ifd of IFD-

adversaries. Then we have Adv4MA,A (𝑧 − 2, 𝜅,MA-IFD) ≤ 𝜖auth +
𝜖ifd . In the following, we just briefly introduce the idea of the proof.

Lemma 1. For any PPT adversary A, the probability that there
exists an oracle Π𝑠

∗

C∗
𝑖

accepts with satisfying condition 𝐶1 is at most

𝜖auth ≤ (3𝑢 ·𝑣 ·𝑑)
2

2
ℓ𝑠

+AdvCRHCRH,H (𝜅) +𝑢 · 𝑣 ·Adv
IND-CMA
PRF,B (𝜅, 3𝑢 · 𝑣 ·𝑑 +

𝑣 · 𝑑) + 2𝑢 · 𝑣 · 𝑑 · Advseuf-cma
OTS,F (𝜅, 1) + 𝑣 · Advseuf-cma

SIG,F (𝜅, 2𝑢 · 𝑣 · 𝑑).

The proof is similar to that of Theorem 1. Here we just present

the proof idea for simplicity. The security reduction concerning

randomness collision is identical to that in the proof of Theorem 1.

The main difference is that there are two types of signature schemes.

Lemma 2. For any PPT adversary A, the probability that A can
output an oracle (C∗

𝑖
, 𝑠∗) satisfying condition 𝐶2 is at most 𝜖ifd ≤

(3𝑢 ·𝑣 ·𝑑)2
2
ℓ𝑠

+ AdvCRHCRH,H (𝜅) +𝑢 · 𝑣 · Adv
IND-CMA
PRF,B (𝜅, 3𝑢 · 𝑣 · 𝑑 + 𝑣 · 𝑑) +

2𝑢 · 𝑣 · 𝑑 · Advseuf-cma
OTS,F (𝜅, 1) + 𝑣 · Advseuf-cma

SIG,F (𝜅, 2𝑢 · 𝑣 · 𝑑).

Supposed that A corrupted a direct authentication server S𝑐 ∈
ASQueueC𝑖

and deceived the client C𝑖 in a session Π𝑡S𝑐
with tran-

script 𝑇 𝑡S𝑐 ,C∗𝑖
. Note that each direct authentication server in

ASQueueC𝑖
has to execute one complete mutual authentication

procedure, and before S𝑐 is popped out, its protocol transcript must

be verified by at least 𝑧 − 1 authentication servers among which at

least 1 authentication server S∗𝑒 is honest and uncorrupted by as-

sumption. According to the identity fraud detection algorithm (i.e.,

Algorithm 2), S∗𝑒 will check: i) Whether𝑇 𝑡S𝑐 ,C∗𝑖
∈ PDB; ii) Whether

the session of C∗
𝑖
recorded by 𝑇 𝑡S𝑐 ,C∗𝑖

has a valid partner session at

every partner of C∗
𝑖
in that session. If one of the checks fails, then
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S∗𝑒 would report the identity fraud event and block C∗
𝑖
and S𝑐 . To

make S∗𝑒 accept, the adversary should successfully impersonate the

uncorrupted party ID 𝑗 ∈ 𝑇 𝑡S𝑐 ,C∗𝑖 in order that it can record the

𝑇 𝑡S𝑐 ,C∗𝑖
without being detected. Hence, the identity fraud detection

security property is implied by the mutual authentication security

property.

The result of Theorem 2 implies the soundness of the identify

fraud detection since an honest authentication server S𝑐 can always

identify that C∗
𝑖
is deceived within the protocol execution between

them according to condition 𝐶2 in Definition 4.

6 PERFORMANCE

General Analysis. Here we assume that the 2MA protocol in-

stances between a client C𝑎 and an authentication server S𝑐 are run
over a network with a good quality of service, e.g., industrial net-

work or intranet. In such a network, man-in-the-middle adversaries

cannot continuously interfere with the communication between C𝑎
and S𝑐 without getting caught. Before running the 2MA protocol,

two parties can diagnose the network via a few hello messages (e.g.,

via ping). Therefore, the OTS public key of S𝑐 can be normally up-

dated promptly at C𝑎 . As a result, C𝑎 does not need to verify a very
long signature-chain in SCacheS𝑐 ,C𝑎

. However, the 2MA protocol

instances between two servers can run over any network (including

the Internet) since long-term keys are used for authentication. And

there is no need to cache the OTS update procedure.

The size of SCache determines the performance of the 2MA in-

stances (involving OTS) since we may need to verify the signature-

chain cached in it to verify the current signature. However, a net-

work adversary which drops or modifies the network packets may

lead to Denial-of-Service (DoS) attacks. Note that if there are such

DoS adversaries, no authentication protocol can work at all. Fortu-

nately, the network adversaries can be identified by a party, when

it, for example, continuously received a few invalid message au-

thentication codes (MAC) by our design. If the MAC checks fail,

then the OTS keys cached in SCache would not grow. In this case,

the party can initiate the DoS attacks detection to eliminate it be-

fore running the 4MA. To mitigate the DoS attacks, both client and

authentication server can also have multiple OTS pubic key pairs

as backup. Once a pubic key fails to update in 𝜉 = |SCache| = 5

attempts, then it could trigger a DoS or identity fraud attack alarm,

and switch to use the backup OTS keys for recovery. And it is very

easy to commit new backup OTS keys when the DoS attacks are

removed. In practice, it is, therefore, reasonable to assume that

the upper-bound of authentication server’s cache |SCacheS𝑐 ,C𝑎
| is

𝜉 = 5, and the upper-bound of client’s cache |SCacheC𝑎
| is 𝜉 (𝑧 − 1)

since it needs to keep the all OTS update procedures with (𝑧 − 1)
unchecked servers. Furthermore, the minimum size of ASQueue is
𝑧 = 3, in which case 4MA can resist 1 compromised server. To resist

more compromised servers, it is needed to enlarge the number of 𝑧,

i.e., deploying more authentication servers.

Further Discussion. Since the DoS tolerant parameter 𝜉 is small (e.g.,

1 ≤ 𝜉 ≤ 5 by assumption), to obtain an optimized performance

for our protocol, it is sufficient to use a small 𝑧 (i.e., the number

of the server which are chosen by a client for both authentication

and identity fraud detection). One could set the parameter 𝑧 such
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Figure 4: Runtimes in Milliseconds (ms).

that 3 ≤ 𝑧 ≤ 6. For a cyber-physical system with 𝑛 authentication

servers such that 𝑛 > 6, each client can randomly choose 𝑧 servers

out of 𝑛 servers to run the protocol.

On the other hand, it is also able to reduce the communication

overhead of C𝑎 in an online authentication session by sending the

IFDCacheC𝑎
to the next intended authentication server S𝑐 in the

queue ASQueueC𝑎
during the idle time of C𝑎 (before doing the on-

line authentication with S𝑐 ). Meanwhile, the sent IFDCacheC𝑎
can

be protected by a message authentication code generated based on

the pre-shared key 𝐾S𝑐 ,C𝑎
. This optimization would roughly reduce

the communication cost by a factor of 𝑧 for online authentication.

Implementation. We implement our system into the firmware

layer of an OpenPLC [5] running on a Raspberry Pi 3 to simulate a

client, and a laptop with Intel Core i7-8750H is used to simulate the

server in our system. OpenPLC implements the firmware layer of a

real PLC, which allows users to implement control logic on top of it.

Most importantly, OpenPLC is a fully open-source implementation

of a PLC, so we are able to integrate our authentication methods

into its firmware. Here we first consider an instantiation instantiate

the OTS scheme with the one called HORS [31] To implement the

OTS, we consider two concrete instantiations. We first instantiate

the OTS scheme by the one called HORS [31] which has an op-

timized computational cost. For simplicity, we realized both the

hash function and the one-way function (required by HORS) with

SHA-256. In the implementation of HORS, the signing key consists

of a set of random values {𝑠𝑖 }𝑖∈[𝑡 ] where |𝑠𝑖 | = 80 and 𝑡 = 256

(which equals to the output length of the SHA-256). Each signature

of HORS is a subset of the singing key {𝑠𝑖𝑖 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘 } where each
index 𝑖 𝑗 (for 1 ≤ 𝑗 ≤ 𝑘) is a log𝑡

2
bits substring of the hash value of

a message (see more details in [31]) and 𝑘 = 32 in our setting. To

obtain better memory and communication costs, we also choose

to use Schnorr signature [33] to instantiate both the OTS and the

long-term key-based signature (required by 4MA). We implemented

the Schnorr signature based on the MNT224 ecliptic curve. The

PRF is realized by HMAC [22]. We implemented our protocol based

on Miracl library [28]. The runtime of 4MA is shown in Figure 4

based on HORS and Schnorr, respectively.

To calculate the communication and the memory overheads, the

lengths of identity, timestamp, and random nonce are considered

as 32bits, 64bits, and 256bits, respectively. Since the memory and

communication cost is close, we roughly depict them together for

simplicity. And we fix 𝜉 = 5 in this benchmark but change 𝑧 from 3

to 8. We roughly show the memory and the communication costs

in Figure 5.
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Protocol Authentication Factors
Security Properties Communication

Pass/KiloBytes

Computation Cost

S-Auth M-Auth IA-SKS IFD SH

He et al. [17] PW+LSK

√ × √ × × 2/700 21H+4MUL

Challa et al. [9] Bio+PW+LPK

√ × √ × × 2/420 1Fe+14Mul+12h

Yang et al. [37] PW+LPK

√ √ √ × × 3/944 59h

4MA (HORS) LSK+OTS

√ √ × √ √
4/(13.4 + 10.7𝑧𝜉 + 5.4𝑧) (𝜉 (𝑘 + 33𝑧 − 33) + 𝑡 + 266)H +3MUL

4MA (Schnorr) LSK+OTS

√ √ × √ √
4/(1.7 + 1.4𝑧𝜉 + 0.7𝑧) (10 + 𝑧𝜉)H +(2𝑧𝜉 + 7)MUL

Table 2: Comparison
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Figure 5: Communication and Memory in KiloByte (KB).

Comparison. Here we briefly compare our proposed schemes with

some existing lightweight delegated authentication protocols, in-

cluding He et al. [17], Challa et al. [9] and Yang et al.[37]. For com-

parison, We consider the following perspectives: (i) authentication

factors, (ii) main security properties, (iii) number of communication

passes, and (iv) computation cost. Furthermore, we let ‘FE’ denote a

fuzzy extractor operation to obtain a secret from biometrics. We let

‘S-Auth’ denote single-side explicit authentication, ‘M-Auth’ denote

mutual authentication, ‘IA-SKS’ denotes implicit authentication

with session key security, ‘IFD’ denotes the server’s identity fraud

detection, and ‘BS’ denote the backward security. Our protocol can

provide backward security since the OTS can evolve to a new one

if the compromised key is not used by the adversary.

To calculate the communication overhead, the lengths of identity,

timestamp, random nonce, hash value and ECC group value are

considered as 32bits, 64bits, 256bits, 256bits and 224bits, respectively.

To compare the computation cost, we let ‘H’ be hash function

operation and ‘MUL’ be an ECC multiplication. We denote ‘Bio’ to

be the biometric authentication factor, ‘PW’ to be password, ’LSK’

denote long-term symmetric key, and ‘LPK’ denote the long-term

public key. The computation and communication costs of 4MA
are then calculated based on HORS OTS [31]. As there are many

different types of entities in these protocols, we only show the

computation cost of all entities for readability and simplicity.

The detailed comparison is shown in Table 2: it shows that our

protocol 4MA are less efficient than the previous delegated au-

thentication protocols. But the overall computation cost (as shown

in Figure 4) of 4MA is still practical for constrained devices. Al-

though the third message sent in our protocol includes a large cache

IFDCache (which dominates the communication cost), it can be

transmitted via a high-speed local network (e.g., 1000Mb Ethernet)

in cyber-physical systems.

Summary. The computational cost of 4MA is with 𝜉 (i.e., the DoS tol-

erant parameter). The client’s performance is still practical for our

recommended parameters. The communication and the memory

costs are linear with both parameters 𝑧 (i.e., the number of authen-

tication servers used to do IFD) and 𝜉 . For 3 ≤ 𝑧 ≤ 8 and 1 ≤ 𝜉 ≤ 5,

those costs are acceptable for modern PLCs, which usually have

1MB to 4MB user memory [6, 36]. To sum up, 4MA instantiating

with HORS is much more efficient than 4MA instantiating with

Schnorr. But the latter one has much fewer communication and

memory overheads.

Although the third message sent in our protocol includes a large

cache IFDCache (which dominates both the communication and

the memory costs), it can be transmitted via a high-speed local

network (e.g., 1000Mb Ethernet) in cyber-physical systems. As our

protocol 4MA is generic, one can instantiate it with different con-

crete algorithms (regarding those building blocks) to obtain either

better performance or more security properties (e.g., post-quantum

security).

7 RELATEDWORK
Nali and Oorschot [30] previously studied identity fraud detection

by using a single sequentially evolved one-time symmetric authen-

tication key, i.e., a new authentication key is generated solely based

on the last key. To deal with the synchronization issue, Yang and

Guo proposed a dynamic authentication credential (DAC) frame-

work (hereafter referred to as the YG scheme). However, the YG

scheme requires a PKI-based cryptographic building block to gen-

erate the ephemeral secret seed for updating DAC, so it is likely

to be computationally expensive and is therefore unfit for power-

constrained devices. Besides, the YG scheme is designed for two-

party secure communication with any authentication delegator, so

it cannot be applied to the three-party case.

In [37], Yang et al. proposed a lightweight delegated authenti-

cated key agreement (AKA) protocol for wireless sensor networks.

It is based on a new DAC framework, which is extended from the

YG scheme. One of the features of using DAC in this scheme is to

detect previous impersonation attacks on users/sensors by com-

paring their current DAC with the corresponding ones stored at

the gateway node. However, the symmetric DAC cannot resist the

server breach.

Recently, Milner et al. [27] developed the foundations and pro-

posed several constructions for security protocols that can auto-

matically detect, if a secret (such as a key or password) has been

misused. For key misuse detection, their constructions mainly on

an evolving public/secret key scenario that puts an emphasis on a

two-party authentication case. However, when considering a spe-

cific lightweight public key cryptographic scenario, e.g., one-time

signature, new network threats would be sprung up (as we men-

tioned in Section 1). Moreover, unlike ours, Milner et al.’s work

did not consider the key synchronization problem during the key

evolving procedure. Nevertheless, it is non-trivial to extend their
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construction idea to the lightweight delegated authentication that

may involve symmetric key (for efficiency reasons) and more pro-

tocol participants.

Another important research direction on the mitigation of server

breach is the threshold authentication. Agrawal et al. [2] introduced

a generic password-based threshold token-based authentication

framework (called it as PASTA) which allows 𝑛 servers to serve as

identity provider. In PASTA, any 𝑡 ≤ 𝑛 servers can collaboratively

verify passwords and generate tokens, while no 𝑡 − 1 servers can
forge a valid token and launch online dictionary attacks. PASTA

leverages on threshold oblivious pseudo-random function (TOPRF)

[15] as its main building block. However, like other threshold cryp-

tosystems (e.g., [8, 12, 13, 32]), the concrete instances of TOPRF

still requires public key cryptographic operations, which are not

suitable for resource-constrained devices in CPS.

We stress that all the works mentioned above do not consider

the identity fraud issues caused by the compromised server in light-

weight delegated authentication protocols. In this work, we focus

on the formulation of a security model and new constructions for

lightweight delegated authentication with identity fraud detection.

8 CONCLUSION
We have proposed the first lightweight key management frame-

work and a delegated authentication protocol with identity fraud

detection (IFD). We have shown that the proposed protocol can

be applied to cyber-physical systems since the scheme is based on

lightweight cryptographic primitives. We have also presented the

formal security result of the proposed scheme under a new secu-

rity model which formulates mutual authentication and server’s

identity fraud detection simultaneously. We leave the construction

of an efficient lightweight authentication protocol with more secu-

rity features such as session key security as our future work. For

example, one could use our authentication protocol as a compiler

to build authenticated key exchange protocols by following [25].
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