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ABSTRACT
Pooled mining has become the most popular mining approach in

the Bitcoin system, which can effectively reduce the variance of

the block generation reward of participants. The security of pooled

mining depends on whether it is incentive compatible, that is, an

honest participantwill get a reward proportional to his work. Recent

attacks onmining pools, for example, BlockWithholding, Fork After

Withholding, and Power Adjusting Withholding (PAW) attacks,

show that malicious participants may undermine the revenue of

the honest pools and receive an unfair share of the mining reward.

This paper shows that the security of Bitcoin is even worse than

what the recent attacks demonstrated. We describe an attack called

Fork Withholding Attack under a Protection Racket (FWAP), in

which the mining pool pays the attacker for withholding a fork.

Our insight is that the mining pools under forking attacks have

incentives to pay in exchange for not being forked. The attacker

and the paying pool negotiate how much to be paid, and we show

that it is possible for both the attacker and the paying pool to earn

higher rewards at the expense of the other pools. In particular, our

formal analysis and simulation demonstrate that the payer and

the FWAP attacker can get up to 1.8× and 3.8× of extra reward

as in PAW, respectively. Furthermore, FWAP can escape from the

“miners’ dilemma” when two FWAP attackers attack each other

under some circumstances. We also propose simple approaches

that serve as the first step towards preventing the FWAP attack.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.
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1 INTRODUCTION
The success of Bitcoin helps jump-start a new era of decentralized

computing [29]. Bitcoin and some other open blockchain systems

adopt proof-of-work (PoW) protocols for ensuring security in the

decentralized settings [7, 22, 23, 35, 39]. Participants (or nodes) in

the blockchainmaintain a ledger data structure recording cryptocur-

rency transactions. PoW allows honest nodes to keep a consistent

ledger, despite Byzantine behavior of a minority of nodes. To pro-

pose a block, a node must solve an expensive computation puzzle

regarding PoW, a process calledmining. If a miner solves the puzzle,

and gets its block included in the blockchain, it earns a reward (for

example, 6.25 Bitcoins as of June 2022). The security of PoW rests

on the assumption that a majority of nodes are honest, which im-

plies that the blockchain must incentivize nodes to behave honestly.

The current incentive mechanism is to reward nodes with native

cryptocurrencies when they find a new block.

As the network grows, for example, due to the popularity of

Bitcoin, the mining difficulty increases, making it harder for an

individual (or solo) miner to find a new block. To maintain steady

rewards, multiple miners form mining pools in which they solve

the same puzzle and get rewards proportional to their contributions

to the pool. In fact, mining pools account for up to 90% of the total

network mining power [17, 18, 34]. Most mining pools [17, 18, 34]

are open, which allow any miner to join and leave. Such pools can

be infiltrated by dishonest miners who join in order to undermine

the pool’s operations with dishonest mining strategies. Due to the

large number of the miners in a pool, it is challenging for the pool

manager to identify and eliminate such infiltrator [16, 24].

Blockchain nodes can be rational rather than purely honest. In

particular, they expect to get rewards proportional with their effort,

otherwise they might leave the network or join the attacker. As a
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consequence, the pooled mining must be incentive compatible in
order to maintain a majority of honest nodes. However, there are

attacks demonstrating that pool mining is not incentive compat-

ible [6, 15, 16, 19, 24, 32], in which the attacker exploits mining

pools to get more rewards than honest nodes who spend the same

effort.

One example of attacking the mining pool is the Block With-

holding (BWH) attack [19, 32], in which the attacker infiltrates a

victim pool and only produces incomplete solutions to the puzzles

(or Partial Proofs of Work, PPoW) for that pool. When it finds full

solutions to the puzzles (or Full Proofs of Work, FPoW) for the vic-

tim pool, it withholds them. This attack reduces the victim pool’s

probability of finding a block, thereby increasing the winning prob-

ability for the attacker. In 2014, this attack was launched against the

mining pool Eligius [37] resulting in a loss of 300 Bitcoins of honest

miners. Another attack example is selfish mining (SM) [6, 15], in

which the attacker keeps mining on the blocks she discovers, rather

than discarding them as in BWH. A powerful SM attacker might

have a private chain formed by the withheld blocks which will be

selectively propagated to cause a fork when other miners find a

block.

Fork After Withholding (FAW) [24] attacks extends BWH, in

which the attacker only broadcasts the FPoW she discovers when

pools other than the victim pool find a block. The attacker’s goal

in FAW is to generate fork to compete with miners outside of

the victim pool. FAW allows the attacker to earn more rewards

than BHW, while avoiding the “miner’s dilemma” that arises when

two attackers launch FAW against each other. Two recent attacks,

namely Power Adjusting Withholding (PAW) and Bribery Selfish

Mining (BSM) [16] increases the attacker’s reward even further. In

PAW, the attacker can reallocate its capacity between infiltration

mining and innocent mining. In BSM, she bribes other miners to

select its branch as the main blockchain.

In this paper, we propose a new attack against Bitcoin pooled

mining that gives the attacker higher rewards than in PAW. Our

insight is that a pool has incentives to pay the attacker to be spared

from forking attacks. We refer to such payment as protection money
(PM), and the paying pool as the colluding pool. We note that the

protection money is different to bribery in BSM, in which the at-

tacker pays the other miners. Our attack, called Fork Withholding

Attack With Protection (FWAP), extends PAW with a new strategy

based on protection money. The intuition behind FWAP is that

the colluding pool always gains “extra reward” (called colluding

reward) when the attacker stops creating forks against it and keeps

attacking other pools. In FWAP, the attacker first demonstrates its

ability to create forks against a colluding pool. This step is done

out-of-band without revealing the attacker’s identity. Next, the

colluding pool and attacker negotiate a payment ratio 𝜇 of the col-

luding reward. Once the payment is received, the attacker discards

the fork. We show that with properly chosen values of 𝜇, it is pos-

sible to have a win-win situation, i.e., both the attacker and the

colluding pool gains more rewards than in PAW.
1

Contributions.We summarize the contributions of this paper as

follows:

1
The extra reward helps deter colluding pool from exposing the attacks.

• We present a new attack called Fork Withholding Attack With

Protection (FWAP), in which a colluding pool pays money to the

attacker with then discards the forks created against the pool.

That the attacker can gain more rewards than in the state-of-the-

art attack, i.e., PAW, gives another evidence of the weakness of

Bitcoin’s pooled mining.

• We analyze FWAP formally and using simulation. Our analysis

takes into account both the number of victim pools and the game

between multiple FWAP attackers. It focuses on the protection

money’s lower bound, 𝜇, that results in win-win situations. We

show that the colluding pool and the FWAP attacker can earn up

to 1.8× and 3.8× more extra rewards than in PAW (based on our

pricing function of 𝜇).

• We introduce an end-to-end instantiation of the FWAP attack to

show how the attacker establishes the protection racket with a

colluding pool. We also discuss and propose practical counter-

measures that serve as first steps towards preventing the FWAP

attack (including our instantiation of protection racket).

Organization. Section 2 describes the preliminaries and related

work. Section 3 introduces the threat model and attack assump-

tions. Section 4 presents an overview of FWAP, followed by more

details in Section 5. Section 6 discusses the pricing scheme. Sec-

tion 7 discusses an attack game to analyze the “miner’s delimma”.

Section E describes how to instantiate FWAP. Section 8 discusses

several mitigations against FWAP before Section 9 concludes.

2 BACKGROUND & RELATEDWORK
In this section, we review the basic concepts of Bitcoin and discuss

related attacks on pooled mining protocols.

2.1 Bitcoin Mining
Mining. Mining is a process of finding a valid block to be added

to the blockchain, which involves solving a hard computational

puzzle. Specifically, each block in the blockchain contains a header

with the Merkle root [27] of the transactions in the block, the hash

of the previous block, a timestamp, and a nonce. The nonce is the

solution to the computation puzzle, which is chosen such that the

hash of the block’s header blkH is lower than or equal to a target

difficulty 𝑑 , i.e., SHA256(SHA256(blkH)) < 𝑑 . The nonce serves as

the proof-of-work (PoW). 𝑑 is adjusted dynamically to ensure that

on average a block is generated every ten minutes. When a miner

finds a valid nonce, it gets a reward, for instance 6.25 Bitcoins.

Mining Pools. As Bitcoin becomes popular, the number of miners

increases, leads to higher𝑑 and thereforemaking it more difficult for

a solo miner to find an FPoW. To maintain steady reward, multiple

miners form a mining pool [9, 26], in which they all find blocks on

behalf of the pool. The pool rewards are then divided among the

miners according their contribution. The mining pool is operated

by a pool manager who assigns work to the miners at the start

of each round. Each miner shows its contribution in the form of

PPoW or FPoW. The former are easier than the latter. Once the

manager receives an FPoW, it broadcasts the corresponding block

to the network to get a reward which it shares with contributors.

Forks. When multiple miners broadcast valid blocks at roughly

the same time, the blockchain is forked. In particular, there are
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multiple branches extending from the same block. Although all

the branches are valid, only the longest branch will be selected

as the main chain, and other branches are discarded. Only miners

whose blocks are in the main chain would get the rewards. This

mechanism can be exploited to give an attacker more rewards than

honest miners [2, 15, 20, 24, 28].

2.2 Related Work
BWH Attack. Rosenfeld [32] proposes an attack, called Block

Withholding (BWH), in which the attacker joins (or infiltrates) a

victim pool to sabotage its chance of getting rewards by submitting

only PPoW to the pool. The attacker discards any FPoW it finds for

the pool, thereby reducing the pool’s block generation rate. The

attacker can split its mining power between infiltration mining in

the victim pool to share the reward of the pool, and solo mining

to generate the blocks for itself. This strategy is highly effective

as it earns the attacker more rewards [13]. A real-world BWH

attack was mounted against “Eligius” mining pool, causing it to

lose 300 BTC [37]. The BWH attack is difficult to detect if the

attacker changes its account frequently. Luu et al. [25] propose

a game-theoretic approach for splitting the mining power when

targeting one or multiple pools that results in an improved reward

for the attacker. When BWH attackers target each other, Eyal [14]

demonstrates the “miner’s dilemma” in which the attackers both

suffer a loss.

The fact that the BWH attacks can help increasing reward prob-

ability of non-victim pools is exploited in Sponsored Block With-
holding (S-BWH) attack [4], in which a sponsoring pool colludes

with the attacker to spend a fraction of its computing power to

target a pool of its choice. This strategy earns the attacker extra

rewards from the sponsorship which is proportional to the damage

inflicted to the victim pool. Our work differs from S-BWH in that

we consider forks, and our threat model is different. In particular,

the attacker withholds attacks against the pools that pay protection

money.

FAW Attack. This attack extends BWH with strategies using forks

[6, 15, 30, 33]. In an FAW attack, the infiltration miner would adap-

tively decide to withhold or submit an FFoW. That is, an FFoW of the

infiltration miner will be submitted the pool manger to cause a fork

if and only if the other miners (outside the victim pool) find a valid

block. Unlike selfish mining, which may not always be profitable,

the FAW attacker earns more rewards than the BWH. In particular,

there is a 56% higher reward for the attacker. At the same time,

there is no “miner’s dilemma”, since one pool with a larger size can

consistently win in the two-pool attack game against another pool.

PAW and B-PAW Attacks. Gao et al. [16] propose two extensions
to previous attacks that increase the attacker’s reward even further.

The first extension is to combine a power adjusting strategy with

FAW, which leads to a new attack called Power Adjusting Withhold-

ing (PAW). We review the high-level idea of PAW in Appendix A.

PAW achieves 2.5× higher reward for the attacker than FAW, with-

out suffering from the “miner’s dilemma”. The second extension

is a bribery strategy that is combined with selfish mining, which

results in a new attack called Bribery Selfish Mining (BSM). BSM

gives the attacker get 10% more rewards than selfish mining.

3 SECURITY MODEL
This section outlines the attack model and the assumptions made

in the rest of the paper.

Attack Model. The attacker can be a solo miner or a mining pool

manager. The attacker can create many identities and Bitcoin ac-

counts, using them to join multiple open mining pools. We assume

that private pools cannot be infiltrated because they require pri-

vate membership. The attacker has limited computational power,

but it can dynamically split this power into innocent mining and
infiltration mining. The former is for finding the block as a normal

miner, the latter is for joining other pools. When the manager of an

open pool is an attacker, her infiltration mining power is the “loyal

mining power” [14] which is a secret. The attacker can plant Sybil

nodes [3] in the Bitcoin network to track the propagation of valid

blocks, and to speed up the propagation of its own blocks. These

Sybil nodes do not consume mining power [24]. The attacker can

bribe other miners or pools as in Bribery attack [10]. It can accept

payments from others and stop attacking them. We call a pool that

makes such payment as a colluding pool.

Assumptions.We made the following assumptions to simplify our

analysis. We note that all except for the last assumption are with

those in existing mining attacks [5, 14, 16, 24].

• The total mining power of the system is normalized to 1. To avoid

“51% attack” [12], a miner or a pool’s mining power must be less

than 0.5.

• There are only intentional forks in the system. This is reasonable

because the fork rates are negligible (the stale block rate is about

0.41% [14, 16, 24]). As a result, a miner’s expected reward is

equal to its probability of finding a valid block. The time for a

miner to find a block follows an exponential distribution with

mean inversely to his computational power. Therefore, a miner’s

probability of finding a block is equal to his mining power.

• The reward of a valid block is normalized to 1 BTC instead of

6.25 BTC (for simplicity), and the block reward for each round is

computed as a probabilistic expectation [16, 24].

• When a pool miner finds an FPoW, the manager propagates the

corresponding block, then splits the reward based on the PPoW

submitted by each pool miner.

• We assume that the attacker only launches the attack proposed

in this work, that is, it does not perform other attacks.

• Except the attacker, other miners are honest but rational. That is,

they do not directly attack each other, but will follow the most

profitable mining strategy [14].

• Some miners will pay an attacker to avoid losing rewards due to

forks.

4 OVERVIEW
We propose a new attack strategy based on protection money. In
particular, a mining pool pays an attacker for withholding forks

against its chain. We combine this strategy with PAW attack to

derive a new attack called FWAP.

Fig. 1 illustrates general idea of the FWAP attack. The attacker

infiltrates a victim pool. When it finds an FPoW inside this victim

pool, it waits until another pool, called colluding pool, finds a block
( 1○ in the figure). Then, instead of broadcasting the FPoW immedi-

ately to create a fork, the attacker sends a request for protection

3
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Figure 1: Overview of FWAP.

money to the colluding pool ( 2○). This request proves the attacker’s

ability to create a fork. The colluding pool verifies the request and

pays the requested money ( 3○). Once payment is received, the at-

tacker discards the FPoW. We discuss in Section E how the attacker

establishes an agreement with the colluding pool that will pay pro-

tection money. Meanwhile, other honest miners would still be the

forking targets of the attacker. Even so, other miners’ reward will be

improved due to FWAP, so they may also expect the FWAP attack

to someone else.

To determine the source of protection money, we define collud-
ing reward as the difference between the colluding pool’s reward

under the FWAP attack and that under the PAW attack. Our first

observation is that the colluding reward is always non-zero be-

cause the attacker does not generate forks against it (while she

keeps attacking other honest mining pools). In other words, it can

be profitable for the colluding pool to pay protection money to earn

the colluding reward. Our second observation is that the reward of

an infiltration miner gained by creating and winning a fork against

a pool has to be shared with other miners in the victim pool, which

can be less than what the colluding pool offers to pay. This means it

is also profitable for the attacker to engage in the protection racket.

Since both the attacker and the colluding pool can profit, a rational

pool is incentivized to collude and join the protection racket.

Our main contribution is to derive a range of the fraction 𝜇 of

the colluding reward such that the attacker ends up with a higher

reward than simply creating forks against the colluding pool. We

obtain the lower bound of 𝜇 such that both the attacker and the

colluding pool have higher rewards than in the PAW attack.

One Victim Pool. The FWAP attacker splits its mining power into

innocent mining (i.e., as a solo miner) and infiltration mining in one

victim pool. The attack is similar to PAW, except when the attacker

finds an FPoW in the victim pool. In the FWAP, the colluding pool

pays protection money so that the attacker withholds this FPoW.

We show how the attack parameters can be chosen to ensure a non-

zero colluding reward. When 𝜇 < 1, the colluding pool’s reward

is improved by (1 − 𝜇) fraction of the colluding reward. In the

next section, we derive the lower bound of 𝜇 to obtain a win-win

situation, that is, both the attacker and the colluding pool get more

rewards than in PAW.

Multiple Victim Pools. The FWAP attacker can split her mining

power to infiltrate multiple victim pools to maximize her reward.

If lucky enough, it can find multiple FPoWs in a given round, one

for each victim pool. This increases the attacker’s probability of

winning the forks against other honest mining pools. We will derive

the lower bound for 𝜇 with 𝑛 victim pools.

Attack Game. To earn more rewards, FWAP attackers may execute

the attack against each other, i.e., by distributing infiltration miners

to her opponent, leading to an attack game similar to previous

mining attacks [16, 24]. Our analysis with two attacking pools

shows that FWAP does not suffer from “miner’s dilemma” [14], and

that the game’s outcome depends on the pools’ sizes.

5 FWAP ATTACK
In this section, we elaborate on the new FWAP attack in different

aforementioned scenarios.

5.1 One Victim Pool
Theoretical Analysis. We formally analyze the rewards of the

FWAP attacker and the colluding pool in one victim pool case. Some

attack parameters and notations are summarized as follows:

𝛼 : Computational power of the attacker;

𝛽 : Computational power of the victim pool;

𝜂: Computational power of the colluding pool;

𝜉 : Computational power of other miners which are none

of attacker, colluding pool, and victim pool;

𝜏1: Attacker’s original infiltration mining power as a

proportion of 𝛼 before power adjusting;

𝜏2: Attacker’s reallocated infiltration mining power as a

proportion of 𝛼 after power adjusting;

𝜏 : Attacker’s average portion of computational power

allocated to infiltration mining in a mining process;

c: Probability of the attacker’s FPoW that is selected as

the main chain in a fork;

R
P

cp
: Colluding pool’s rewards in PAW;

R
PM

cp
: Colluding pool’s rewards in FWAP;

R
Df

cp
: Colluding reward R

Df

cp
= R

PM

cp
− R

P

cp
;

Rm: Colluding pool’s protection money;

𝜇: Protection money ratio, i.e., Rm = 𝜇 · RDf
cp
.

Comparing to PAW, we here have a fewmore parameters.We use

𝜂 to denote the computational power of the colluding pool, and let

𝜇 denote the protection money ratio that is defined as a proportion

of the extra reward of the colluding pool. Unlike in the previous

attacks, the computational power of other miners is 𝜉 = 1−𝛼−𝛽−𝜂.
Namely, it additionally excludes the computational power of the

colluding pool. Note that the computational power of the victim

pool 𝛽 does not include the computational power of infiltration

miners. Moreover, we highlight that the network capability 𝑐 of

an attacker can be determined following the approach in [24, §9],
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which is lower bounded by 𝛼 + 𝛽 with rational pool managers and

can reach a value over 0.9 in practice.

As in the PAW attack, we consider an FWAP attacker who can

adjust the infiltration power when her infiltrating miner finds an

FPoW in a given round. The difference between FWAP attack and

PAW attack is that the fork target of FWAP attack does not include

the colluding pool. Specifically, we analyze the attack results with

the following cases:

Case 1: The attacker finds an FPoW and earns a legitimate reward via

innocent mining.

Case 2: Other miners find an FPoW. The attacker will accept the block and

keep mining. So she cannot earn any reward in this case.

Case 3: Colluding pool finds an FPoW. This case is similar to Case 2, in

which the attacker earns nothing but continues mining the next block.

Case 4: Honest miners in the victim pool find an FPoW. The attacker gets a

shared reward from the pool in terms of her infiltration mining power.

Case 5: Infiltration miner finds an FPoW. The attacker withholds the block

and adjusts the infiltration power. In the meantime, we consider the fol-

lowing sub-cases (in the given round) regarding the situations that another

FPoW is found:

Case 5-1: By innocent mining. The attacker discards the withheld block

and propagates her new block.

Case 5-2: By other miners. The attacker immediately submits the with-

held FPoW to the victim pool manager. A fork will be generated if the

manager decides to propagate her FPoW.

Case 5-3: By the colluding pool. The attacker discards the withheld

block and accepts the protection money.

Case 5-4: By honest miners in the victim pool. The attacker discards the

withheld block and shares the reward of the victim pool.

The above cases are adapted from the PAW attack by incorpo-

rating two new cases, i.e., Case 3 and Case 5-3. The Case 3 would

not affect the attacker’s reward. But the attacker can receive pro-

tection money from the colluding pool in Case 5-3. We will show

the protection money would incentive the attacker to adjust her

attack parameters to get more reward. The other cases are similar

in PAW. Before power adjusting, the Case 1 occurs with probability

(1 − 𝜏1)𝛼 . The occurrence probabilities of Case 2 and Case 3 are 𝜉

and 𝜂, respectively. The attacker would fall in Case 4 with probabil-

ity 𝛽 , and into Case 5 with probability 𝜏1𝛼 . Note that, after adjusting

the computational power in Case 5, the total mining power will

become (1 − 𝜏2)𝛼 because the infiltration mining will not mine

FPoWs in that round. As a result, the occurrence probabilities of

Case 5-1, 5-2, 5-3 and 5-4 are 𝜏1𝛼 · (1−𝜏2 )𝛼
1−𝜏2𝛼

, 𝜏1𝛼 · 𝜉
1−𝜏2𝛼

, 𝜏1𝛼 · 𝜂
1−𝜏2𝛼

,

𝜏1𝛼 · 𝛽
1−𝜏2𝛼

, respectively. Nevertheless, the sum of the probability

in Case 5-1, 5-2, 5-3 and 5-4 is 𝜏1𝛼 .

Protection Money. We assume that the FWAP attacker and the

colluding pool have a secret pact with the protection money ratio

𝜇 to execute the FWAP attack. Here we will focus on studying the

constraints of 𝜇 to make the FWAP attack effective. In Section 6,

we will discuss how to price the protection money in detail. We

let R
PM

cp
be the colluding pool’s reward in FWAP before she pays

protection money, and let R̃
PM

cp
be the colluding pool’s reward after

she pays protection money. With the same parameters (i.e., 𝛼 , 𝛽 ,

and c), we can obtain the reward of the colluding pool in the PAW

attack denoted by R
P

cp
which will be used as our reward baseline.

Generally speaking, the colluding pool will take 𝜇 fraction of

her colluding reward R
Df

cp
as protection money. The minimum pro-

tection money must be sufficient to guarantee the reward of the

attacker in the FWAP attack is greater than that in the PAW attack.

To calculate the colluding reward R
Df

cp
, we should get the col-

luding pool’s reward R
P

cp
in the PAW attack and her reward R

PM

cp

in the FWAP attack. Note that the other miners’ computational

power is 1−𝛼 − 𝛽 in the PAW attack but 1−𝛼 − 𝛽 −𝜂 in the FWAP

attack. This is because the other miners’ mining power in an FWAP

attack does not include the colluding pool’s mining power. Namely,

other miners’ computing power is reduced in the FWAP attack, so

the FWAP attacker should figure out optimal infiltration mining

power to maximize her reward. We let 𝜏1 and 𝜏2 be the optimal

infiltration mining power before and after power adjusting in the

FWAP attack, respectively. And we let 𝜏 ′
1
and 𝜏 ′

2
be the optimal

infiltration mining power before and after power adjusting in the

PAW attack, respectively. Then, we can get the colluding pool’s

reward R
P

cp
in the PAW attack as R

P

cp
= 𝜂 + (1 − c)𝜏 ′

1
𝛼

𝜂

1−𝜏 ′
2
𝛼
, and

the colluding pool’s reward R
PM

cp
in the FWAP attack as

R
PM

cp
= 𝜂 + 𝜏1𝛼

𝜂

1 − 𝜏2𝛼
.

Then, the colluding reward can be represented as

R
Df

cp
= R

PM

cp
− R

P

cp
= 𝜏1𝛼

𝜂

1 − 𝜏2𝛼
− (1 − c)𝜏 ′

1
𝛼

𝜂

1 − 𝜏 ′
2
𝛼
.

Now, we can calculate protection money as a portion of the col-

luding reward R
Df

cp
as

Rm = 𝜇 · RDf
cp

= 𝜇 (RPM
cp

− R
P

cp
) = 𝜇 (𝜏1𝛼

𝜂

1 − 𝜏2𝛼
− (1 − c)𝜏 ′

1
𝛼

𝜂

1 − 𝜏 ′
2
𝛼
) .

We can further derive the reward R
PM

a
(𝜏1, 𝜏2) of an FWAP at-

tacker from the protection money and the rewards in all other cases

as follows:

R
PM

a
(𝜏1, 𝜏2 ) = 𝜇 (𝜏1𝛼

𝜂

1 − 𝜏2𝛼
− (1 − c)𝜏 ′

1
𝛼

𝜂

1 − 𝜏 ′
2
𝛼
) (1 − 𝜏1 )𝛼+ (1)

+ 𝛽
𝜏1𝛼

𝛽 + 𝜏1𝛼
+ 𝜏1𝛼

(
(1 − 𝜏2 )𝛼
1 − 𝜏2𝛼

+ ( 𝛽

1 − 𝜏2𝛼
+ 𝑐 𝜉

1 − 𝜏2𝛼
) 𝜏𝛼

𝛽 + 𝜏𝛼

)
.

Since the 𝜇 is pre-defined and the Rm in Eq. (1) can be regarded

as a function related to 𝜏1 and 𝜏2, we can calculate the optimal

infiltration mining power 𝜏1, 𝜏2, and 𝜏 respectively. Hence, with

known 𝜇 and other parameters, the attacker can determine the

optimal infiltration power to maximum her rewards. The reward

R
PM

a
(𝜏1, 𝜏2) of an FWAP attacker (defined by Eq. (1)) consists of

three parts, i.e., the innocent mining rewards in Cases 1 and 5-1, the

infiltration mining rewards in Cases 4, 5-2 and 5-4, and protection

money received in Case 5-3. Specifically, we have the innocent

mining reward (1 − 𝜏1)𝛼 + 𝜏1𝛼 · (1−𝜏2 )𝛼
1−𝜏2𝛼

. Since the attacker will

share the profit with honest miners in the victim pool, the reward

for infiltration mining is the sum the rewards in the corresponding

cases, i.e., 𝛽 · 𝜏1𝛼
𝛽+𝜏1𝛼

+ c𝜏1𝛼
𝜉

1−𝜏2𝛼
𝜏𝛼

𝛽+𝜏𝛼 + 𝜏1𝛼
𝛽

1−𝜏2𝛼
𝜏𝛼

𝛽+𝜏𝛼 .
When the colluding pool can not afford enough protectionmoney

to incentivize the attacker for running FWAP attack, the attacker

will run PAW attack instead. In the meantime, the colluding pool’s

reward should be improved in the FWAP attack as well after pay-

ing protection money. Otherwise, the colluding pool prefers to be

forked as in the PAW attack. In the following, we are going to show

these requirements can be satisfied in the FWAP attack. Our strat-

egy is first to present that the colluding pool can have a non-zero

colluding reward when c > 0, so it has protection money to pay

5
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the FWAP attacker via Lemma 5.1. On the second, we will show

that an FWAP attacker can earn more rewards than honest mining

via Theorem 5.2, so the attacker may choose to execute the attack.

Then, we will show that FWAP is better than PAW via Theorem 5.3

under certain circumstances. That is, we will prove that the FWAP

attacker can always enable the colluding pool to have enough col-

luding reward and set a proper 𝜇 to increase both the reward of

herself and the colluding pool comparing to the PAW attack.

Lemma 5.1. The colluding reward is always greater than zero when
coefficient c > 0.

Proof. We show that colluding pool can always increase her

reward by paying protection money when c > 0 (implying the

probability on winning in forks). We consider that the FWAP at-

tacker set (𝜏1, 𝜏2) = (𝜏 ′
1
, 𝜏 ′

2
) first, since a FWAP attacker was a PAW

attacker before collecting protection money. The protection money

could bring more rewards to the attacker, she will find the optimal

(𝜏1, 𝜏2) based on the reward with (𝜏 ′
1
, 𝜏 ′

2
) (i.e., the optimal (𝜏1, 𝜏2)

will maximize the attacker’s reward R
PM

a
).

With (𝜏 ′
1
, 𝜏 ′

2
), the colluding pool can get reward

R
PM

cp
(𝜏 ′

1
, 𝜏 ′

2
) = 𝜂 + 𝜏 ′

1
𝛼

𝜂

1 − 𝜏 ′
2
𝛼

in the FWAP attack, and can earn the reward in the PAW attack as

R
P

cp
(𝜏 ′

1
, 𝜏 ′

2
) = 𝜂 + (1 − c) · 𝜏 ′

1
𝛼

𝜂

1 − 𝜏 ′
2
𝛼
.

As well, we can calculate the colluding reward with (𝜏 ′
1
, 𝜏 ′

2
) as

R
Df

cp
(𝜏 ′

1
, 𝜏 ′

2
) = R

PM

cp
(𝜏 ′

1
, 𝜏 ′

2
) − R

P

cp
(𝜏 ′

1
, 𝜏 ′

2
) = c · 𝜏 ′

1
𝛼

𝜂

1 − 𝜏 ′
2
𝛼

> 0. (2)

Since R
Df

cp
(𝜏 ′

1
, 𝜏 ′

2
) is non-zero, this proves this lemma. □

Theorem 5.2. An FWAP attacker can always earn more rewards
than honest mining, and the reward of an FWAP attacker has a lower
bound defined by the reward from an BWH attack.

Theorem 5.3. For 𝜇 ∈ ( 𝜏 ′𝛼
𝛽+𝜏 ′𝛼 , 1), an FWAP attacker can earn

more rewards than an PAW attacker when c > 0.

We present the proofs of Theorem 5.2 and Theorem 5.3 in Ap-

pendix B and Appendix C, respectively.

Theorem 5.4. For arbitrary 𝜇 ∈ (0, 1), the colluding pool can
always get more rewards in the FWAP attack than that in the PAW
attack.

Proof. Since the fork-wining probability 𝑐 of an attacker is as-

sumed to be non-zero, the colluding pool may suffer from some

loss of reward in the PAW attack. On the other side, if the attacker

holds the block without creating any fork against the colluding

pool in the FWAP attack, such a reward loss would become R
Df

cp
for

𝜇 = 0. Hence, the colluding reward can be non-zero. Even if the

colluding pool pays 𝜇 · RDf
cp

(for 𝜇 < 1) as protection money to com-

pensate the attacker, it can still have an extra reward (1 − 𝜇)RDf
cp

comparing to its reward in the PAW attack. In a nutshell, the col-

luding pool will have greater rewards in FWAP than in PAW for

any 𝜇 ∈ ( 𝜏 ′𝛼
𝛽+𝜏 ′𝛼 , 1). Since 𝜇 defines the fraction of colluding reward

being paid as protection money, which is smaller than 1, so we can

have that (1 − 𝜇)RDf
cp

> 0. □

The result of Theorem 5.4 guarantees that a rational colluding

pool is willing to join the FWAP attack. Once the attacker chooses

to execute the FWAP attack with a pre-determined 𝜇, she has mo-

tivation to adjust its attack parameters (i.e., 𝜏1 and 𝜏2) to increase

the colluding reward to gain more rewards. The attacker could use

a similar approach in PAW to determine the optimal 𝜏1 and 𝜏2.

Quantitative Analysis.We use specific attack parameters to show

the effectiveness of FWAP attack. Following the approach in [16, 24],

we define the expected relative extra reward (RER) RER
𝑆
𝑥 =

R
S

𝑥−RH𝑥
R
H

𝑥

for comparison, where 𝑆 represents different mining strategies that

can be honest mining (H), FWAP (PM), and PAW (P), 𝑥 denotes an

entity that can be attacker (a), victim pool (b) and colluding pool

(cp), and R
S

𝑥 represents the reward of 𝑥 with strategy 𝑆 . Initially, we

have R
H

𝑎 = 𝛼 , RH
𝑏
= 𝛽 , RH𝑐𝑝 = 𝜂 with honest mining strategy. In the

following analysis, we consider a specific attacker with computa-

tional power 𝛼 = 0.2, who executes the attacks against a victim pool

with computational power 𝛽 = 0.2 and conspires with a colluding

pool with computational power 𝜂 = 0.2.

(a) RERPM𝑎 and RERP𝑎 (b) RERPM𝑐𝑝 and RERP𝑐𝑝

Figure 2: Quantitative analysis results against one pool. (a)
and (b) show the RERs of the FWAP attacker and the colluding pool,
respectively, with varying𝑐 and 𝜇, and constant computational power
of attacker 𝛼 = 0.2, victim pool 𝛽 = 0.2, and colluding pool 𝜂 = 0.2.

Fig. 2(a) shows the attacker’s RER
PM

𝑎 and RER
P

𝑎 in FWAP and

PAW, respectively. The upper surface is RER
PM

𝑎 , and the lower

surface represents RER
P

𝑎 . The RERs of FWAP are proportional to

𝜇 and c. The larger 𝜇 and c are, the higher reward of attacker is.

So the attacker can earn more rewards in FWAP than in PAW with

the 𝜇 divided by the blue-lined boundary shown in Fig. 2(a). For

0.99 ≤ 𝜇 < 1 and 𝑐 = 1, the RER of the FWAP attacker is about 2.3×
as in PAW.

Fig. 2(b) shows the RER
PM

𝑐𝑝 and RER
PM

𝑐𝑝 of the colluding pool in

two kinds of attacks. The upper surface represents RER
PM

𝑐𝑝 , and

the lower surface is RER
P

𝑐𝑝 . Note that Fig. 2(b) only shows the

RER
PM

𝑐𝑝 with valid range of 𝜇 since the attacker would not run the

FWAP attack with the invalid 𝜇. The optimal 𝜇 (that maximizes the

colluding pool’s extra reward) falls in the range between 0.4 to 0.6,

which is highlighted with a white line. For 𝜇 = 0.5 and 𝑐 = 0.6, the

colluding pool’s RER in FWAP is about 2.5× higher than that in

PAW. Nevertheless, the colluding pool can always gain an extra

reward if 𝜇 is within the valid range defined by Theorem 5.3. Even

if we use parameters 𝜇 = 0.95 (in attacker’s interests) and 𝑐 = 1, the

FWAP attack still gives the colluding pool an extra reward of 50%

more than the PAW attack.

In Table 1, we show a few lower bounds of the protection money

ratio 𝜇 and the optimal ones to the colluding pool. The lower bound

of 𝜇 is inversely proportional to the size of the victim pool, since

6
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the infiltration mining would share less in a bigger pool (note that

the protection money only needs to be more than the attacker’s

shared reward in the victim pool). And the lower bound of 𝜇 in all

cases is not big, which makes the FWAP attack easy to implement.

Table 1: Examples of protection money ratio 𝜇. The values x(y)
indicate the lower bound (x) and optimal value (y) of 𝜇 in a single-
pool attack scenario, respectively.

𝛽 c = 0 c = 0.25 c = 0.5 c = 0.75 c = 1

0.1 0 (0.54) 0.27 (0.50) 0.49 (0.49) 0.56 (0.52) 0.58 (0.61)

0.2 0 (0.56) 0.07 (0.48) 0.25 (0.42) 0.40 (0.39) 0.44 (0.42)

0.3 0 (0.59) 0.08 (0.49) 0.09 (0.41) 0.21 (0.35) 0.33 (0.36)

5.2 Multiple Victim Pools
Theoretically Analysis. Here we will analyze the attack scenario

that the attacker distributes infiltration mining power into 𝑛 (for

𝑛 ≥ 2) distinct victim pools (𝑝1, 𝑝2, . . . , 𝑝𝑛) to maximize its reward.

In this analysis, we shall use the following additional parameters:

𝛽 (𝑝𝑖 ) : Computational power of 𝑝𝑖 ;

𝜏
(𝑝𝑖 )
𝑗

: FWAP attacker’s infiltration mining power in 𝑝𝑖 as a

proportion of 𝛼between (j-1)-th and j-th FPoWs are found;�
𝜏
(𝑝𝑖 )
𝑗

: PAW attacker’s infiltration mining power in 𝑝𝑖 as a proportion

of 𝛼 between (j-1)-th and j-th FPoWs are found;

c
(𝑝𝑖 )
𝑗

: Probability of the attacker’s FPoW in 𝑝𝑖 will be selected as the

main chain among (j+1) branches.

We denote with [𝑛] = {1, . . . , 𝑛} ⊂ N the set of integers between

1 and 𝑛. Recall that the attacker’s reward comprises of the reward

of innocent mining, the shares from victim pools, the reward of

creating branches, and the protection money from the colluding

pool. Before calculating these rewards, we first consider two cases

regarding infiltration mining:

Case 1: No infiltration miner finds FPoW;

Case 2: 𝑖 infiltration miners find FPoWs for 𝑖 ∈ [𝑛].
In Case 1, the total infiltration mining power is

∑𝑛
𝑘=1

𝜏
(𝑝𝑘 )
1

𝛼 , and

the total infiltration mining power become

∑𝑛
𝑘=1

𝜏
(𝑝𝑘 )
i+1

𝛼 in Case 2

since the attacker would adjust infiltration mining power whenever

the infiltration mining finds an FPoW, where 𝜏
(𝑝𝑘 )
i+1

𝛼 denotes the

power adjusting result after 𝑖 FPoWs were found in the pool 𝑝𝑘 .

Income from innocent mining. From innocent mining, the at-

tacker can get a reward (1 − ∑𝑛
𝑘=1

𝜏
(𝑝𝑘 )
1

)𝛼 in Case 1. In Case 2,

the innocent mining power is (1 − ∑𝑛
𝑘=1

𝜏
(𝑝𝑘 )
1+i

)𝛼 . We consider the

infiltration mining in pools 𝑝1, 𝑝2, . . . , and 𝑝𝑖 finds FPoWs sequen-

tially (in order) before the innocent mining discovers a block. The

innocent mining can get a reward

(1 −
𝑛∑︁

𝑘=1

𝜏
(𝑝𝑘 )
i+1

)𝛼 ·
𝑖∏
𝑗=1

𝜏
(𝑝𝑗 )
j

𝛼

1 − ∑𝑗

𝑘=1
𝜏
(𝑝𝑘 )
j+1

𝛼
. (3)

Since each of the time orders of these found FPoWs has a different

probability and causes different rewards to the attacker, we need

to consider all the possible numbers and orders of FPoWs found

before the innocent mining. By summing up the innocent mining

reward in all cases. Based on Eq. (3), we get the total reward R𝑖𝑛𝑛𝑜

of innocent mining as

R𝑖𝑛𝑛𝑜 = (1 −
𝑛∑︁

𝑘=1

𝜏
(𝑝𝑘 )
1

)𝛼 +
𝑛∑︁
𝑖=1

∑︁
p𝑖 ∈P𝑖

(1 −
𝑛∑︁

𝑘=1

𝜏
(𝑝𝑘 )
i+1

)𝛼 · POp𝑖 , (4)

where P𝑖
denotes all possible FPoW-found orders among 𝑖 victim

pools 𝑝1, 𝑝2, . . ., 𝑝𝑖 (where each 𝑝 𝑗 ∈ (𝑝1, 𝑝2, . . . , 𝑝𝑛 and 𝑗 ∈ [𝑖]),

and p𝑖 is one kind of orders in P𝑖
, and POp𝑖 =

∏𝑖
𝑗=1

𝜏
(𝑝𝑗 )
j

𝛼

1−∑𝑗

𝑘=1
𝜏
(𝑝𝑘 )
j+1

𝛼

which is relevant to p𝑖 and will appear in many other places later.

Share from victim pools. Similarly, we calculate the shares from

victim pools in two cases, respectively. In Case 1, the victim pool

𝑝𝑖 can get a reward 𝛽𝑖 when an honest miner in 𝑝𝑖 finds an FPoW

before any infiltration miners did. Let SH
(𝑝𝑘 )
0

=
𝜏
(𝑝𝑘 )
1

𝛼

𝜏
(𝑝𝑘 )
1

𝛼+𝛽𝑘
be the

proportion of infiltration mining power in the victim pool 𝑝𝑘 in

Case 1. Therefore, infiltration miners in all victim pools can get a

shared reward

∑𝑛
𝑘=1

𝛽 (𝑝𝑘 )SH(𝑝𝑘 )
0

=
∑𝑛
𝑘=1

𝛽 (𝑝𝑘 )
𝜏
(𝑝𝑘 )
1

𝛼

𝜏
(𝑝𝑘 )
1

𝛼+𝛽𝑘
. When

an honest miner in victim pool 𝑝𝑘 finds an FPoW in Case 2, the

attacker can share SH
(𝑝𝑘 )
𝑖

=
𝜏
(𝑝𝑘 )
1,...,𝑖+1

𝛼

𝛽 (𝑝𝑘 )+𝜏 (𝑝𝑘 )
1,...,𝑖+1

𝛼
fraction of the victim

pool 𝑝𝑘 ’s reward. Considering all possible 𝑘 and 𝑖 , the attacker can

share a reward

∑𝑛
𝑖=1

∑
p𝑖 ∈P𝑖

(∑𝑖
𝑘=1

SH
( (𝑝𝑘 ) )
𝑖

𝛽 (𝑝𝑘 )POp𝑖

)
. To sum

up the share in each case, we have the following total reward R𝑠ℎ𝑎𝑟𝑒

from sharing the victim pools’ reward

R𝑠ℎ𝑎𝑟𝑒 =

𝑛∑︁
𝑘=1

𝛽 (𝑝𝑘 )
SH

(𝑝𝑘 )
0

+
𝑛∑︁
𝑖=1

∑︁
p𝑖 ∈P𝑖

(
𝑖∑︁

𝑘=1

SH

(𝑝𝑘 )
𝑖

𝛽 (𝑝𝑘 )
POp𝑖

)
(5)

Income from Creating branches. Since there is no fork in Case

1, we here focus on the rewards of infiltration miners in Case 2. As

there are at most 𝑖 infiltration miners can find FPoWs in Case 2 (by

assumption), the attacker can get a share from wining in the fork

as long as one of the blocks submitted by the infiltration miners

is selected as the main chain. The total reward R𝑓 𝑜𝑟𝑘 of creating

branches is the sum of the rewards from all the cases of generating

a fork, which is calculated as follows

R𝑓 𝑜𝑟𝑘 =

𝑛∑︁
𝑖=1

∑︁
p𝑖 ∈P𝑖

(
𝑖∑︁

𝑘=1

SH

(𝑝𝑘 )
𝑖

c

(𝑝𝑘 )
𝑖

𝜉 · POp𝑖

)
. (6)

Income from Protection money. The protection money obtained

in the multiple-pool scenario is analyzed by the following lemma.

Lemma 5.5. When the attacker executes the FWAP attacks against
𝑛 victim pools, she can get protection money

Rm = 𝜇𝜂

𝑛∑︁
𝑖=0

∑︁
p𝑖 ∈P𝑖

(
POp𝑖 − (1 −

𝑖∑︁
𝑘=1

c
(𝑝𝑘 )
𝑖

)�POp𝑖

)
, (7)

where �POp𝑖 =
∏𝑖

𝑗=1

�
𝜏
(𝑝𝑗 )
𝑗

𝛼

1−∑𝑗

𝑘=1

�
𝜏
(𝑝𝑘 )
𝑗+1

𝛼

.

Proof. Note that the protection money is 𝜇 fraction of the

colluding reward which is the difference between the colluding

pool’s rewards in the FWAP attack and in the PAW attack. In a

PAW attack, the colluding pool can get rewards from honest min-

ing and winning a fork. Since the colluding pool has probability

1 − ∑𝑖
𝑘=1

c
𝑝 (𝑘 )
𝑖

to win in a fork with 𝑖 + 1 branches, it can earn a

reward 𝜂 + ∑𝑛
𝑖=0

∑
p𝑖 ∈P𝑖

(
(1 − ∑𝑖

𝑘=1
c
(𝑝𝑘 )
𝑖

)𝜂 · �POp𝑖

)
.

In an FWAP attack, the colluding pool can get the following

reward from honest mining 𝜂 + ∑𝑛
𝑖=0

∑
p𝑖 ∈P𝑖

(
𝜂 · POp𝑖

)
. Then we
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can derive the equation of colluding reward as

R
Df

cp
= 𝜂

𝑛∑︁
𝑖=0

∑︁
p𝑖 ∈P𝑖

(
POp𝑖 − (1 −

𝑖∑︁
𝑘=1

c

(𝑝𝑘 )
𝑖

) · �POp𝑖

)
. (8)

From Eq. (8), we can derive protection money Rm in Eq. (7). □

Theorem 5.6. For 𝜇 ∈ (𝜌, 1), an FWAP attacker can earn more
rewards than an PAW attacker when attacking 𝑛 victim pools, where

𝜌 =

∑𝑛
𝑖=1

∑
p𝑖 ∈P𝑖

{∑𝑖
𝑘=1

�
SH

(𝑝𝑘 )
𝑖

c
(𝑝𝑘 )
𝑖

�POp𝑖

}
∑𝑛

𝑖=1

∑
p𝑖 ∈P𝑖

{∑𝑖
𝑘=1

c
(𝑝𝑘 )
𝑖

�POp𝑖

} , and
�
SH(𝑝𝑘 )

𝑖
=

�
𝜏
(𝑝𝑘 )
1,...,𝑖+1

𝛼

𝛽 (𝑝𝑘 )+ �
𝜏
(𝑝𝑘 )
1,...,𝑖+1

𝛼

.

The proof of this theorem is given in Appendix D. Eventually, the

total reward of an FWAP attacker against 𝑛 pools can be obtained

by summing up the rewards in Eq. (4), (5), (6), and (7):

R
PM

a
= R𝑖𝑛𝑛𝑜 + R𝑠ℎ𝑎𝑟𝑒 + R𝑓 𝑜𝑟𝑘 + Rm (9)

Quantitative Analysis.We consider a special case with two victim

pools (two-pool) to show the RER (%) of the attacker in an FWAP

attack. In our analysis, we use the similar parameters as in the

single victim pool scenario, i.e., 𝛼 = 0.2 and 𝜂 = 0.2 but we set the

computational power of two victim pools as 𝛽1 = 0.2 and 𝛽2 = 0.1.

(a) RERPM𝑎 and RERP𝑎 (b) RERPM𝑐𝑝 and RERP𝑐𝑝

Figure 3: Quantitative analysis results against two pools. (a)
and (b) show the RERs of the FWAP attacker and the colluding pool,
respectively, with 𝛼 = 0.2 and 𝜂 = 0.2, and (𝛽1, 𝛽2 ) = (0.2, 0.1) .

By comparing Fig. 3 and Fig. 2, we can find that the overall

shapes of these sub-figures do not change much but the quantities

become larger. Fig. 3(a) shows that FWAP attacker can still gain

more rewards than the PAW attacker in the two-pool scenario, and

the gap between RER
PM

𝑎 and RER
P

𝑎 is not widened. Fig. 3(b) shows

that the two-pool attack scenario would also indirectly increase

the reward of the colluding pool since the attacker may distribute

more infiltration mining power to victim pools.

In Table 2, we give typical examples regarding lower bounds

of protection money ratio in a two-pool attack scenario. From the

results, we can see that the number of victim pools has little impact

on the lower-bound comparing to Table 1.

Table 2: Examples of protection money ratio 𝜇. The values x(y)
indicate the lower bound (x) and optimal value (y) of 𝜇 in a two-pool
attack scenario, respectively.

(𝛽1, 𝛽2 ) c = 0 c = 0.25 c = 0.5 c = 0.75 c = 1

(0.1, 0.1) 0 (0.56) 0.23 (0.49) 0.44 (0.44) 0.56 (0.52) 0.58 (0.60)

(0.2, 0.1) 0 (0.54) 0.11 (0.49) 0.27 (0.44) 0.42 (0.40) 0.47 (0.50)

(0.3, 0.1) 0 (0.56) 0.09 (0.50) 0.15 (0.43) 0.24 (0.35) 0.36 (0.37)

6 PROTECTION MONEY PRICING
For an FWAP attack, the attacker and the colluding pool need to pre-

negotiate a protection money ratio 𝜇 in advance. Although Eq. 13

defines the lower bound of 𝜇, the attacker is very likely to ask more

than that, e.g., a value close to 1. Although the colluding pool can

always be more profitable for any 𝜇 ∈ (0, 1), it still wants to pay

with its optimal 𝜇′. Let 𝜌 be the value of the lower bound of 𝜇, and
𝜖 ∈ (0, 1) be a small constant that is used to guarantee the minimum

colluding reward reserved for the colluding pool, e.g., 𝜖 = 0.01. Note

that the 𝜖 could be set as a public parameter. The problem then

becomes how to share the rest fraction 1− 𝜇−𝜖 of colluding reward
that the attacker can get from the colluding pool. That is, we can

first model 𝜇 as a pricing function 𝜇 (𝜓 ) = 𝜌 + 𝜓 · (1 − 𝜌 − 𝜖),
where𝜓 ∈ (0, 1) is an uncertain coefficient for now. To determine

𝜓 , we propose to use the network capability 𝑐 , since it reflects the
capability of attacker on winning in the forks. Eventually, we can

set𝜓 = 𝑐 , and re-write the pricing function as

𝜇 = 𝜌 + 𝑐 · (1 − 𝜌 − 𝜖 ), (10)

where 𝜖 satisfies that 𝜖 ∈ (0, 1) and 1 − 𝜌 − 𝜖 > 0. We can also

see a similar pattern from the quantitative analysis (i.e, Table 1) in

Section 5. Since 𝜏1,𝛼 , and𝜂 are known to the attacker in advance, we

could reduce the pricing problem to the one regarding determining

the network capability 𝑐 . The 𝑐 can be computed following the

approach in [24, §9], with a lower-bound 𝑐 = 𝛼 + 𝛽 . Since the 𝑐 may

change due to many reasons (e.g., Bitcoin network changing [21, 36]

or Sybil nodes shifting [3]), the attacker and colluding pool can

re-negotiate 𝜇 after an agreed period of time (e.g., every week).

After the 𝜇 is settled, the colluding pool can pay the protection

money whenever the attacker shows an FPoW that can be used to

generate the fork to her block.

Quantitative Analysis and Simulation.We quantitatively ana-

lyze the RERs of an attacker and a colluding pool in the FWAP attack

to show the effectiveness of our pricing function. We also compare

FWAP with PAW under the new pricing function. In our analysis,

we set 𝛼 = 0.2 for attacker and 𝜂 = 0.2 for colluding pool. In single-

pool scenario, we use different victim pool sizes 𝛽 ∈ {0.1, 0.2, 0.3}.
And we choose tree cases of computational power of victim pools

(𝛽1, 𝛽2), i.e., (0.1, 0.1), (0.2, 0.1), and (0.3, 0.1), in the two-pool sce-

nario. In addition, we set c
(𝑝𝑖 )
𝑘

/𝑘 (for 𝑘 ∈ {1, 2} when 𝑘 infiltration

miners find 𝑘 distinct FPoWs in the two-pool scenario.

The RERs for an attacker based on the pricing function Eq. (10)

are depicted in Fig. 4(a) and Fig. 5(a), respectively. Considering

the two-pool scenario and the Case 3 (𝛽 = 0.3) in Fig. 4(a), the

PAW attack gives the attacker an RER of 6.17% but she can gain a

maximum RER of 20.26% in an FWAP attack. Therefore, the RER

of an FWAP attacker is 3.8× in PAW (when 𝑐 = 1 in the Case 3

of two-pool scenario). The RER of the attacker obtained based on

Eq. (10) is near optimal comparing to the theoretical results shown

in Section 5.

Fig. 4(b) and Fig. 5(b) depict the colluding pool’s RER in the

FWAP attack with a 𝜇 defined by Eq. (10). The results show that

the FWAP attack can give the colluding pool a substantial extra

reward compared to the PAW attack. E.g., the FWAP attack allows

the colluding pool to earn up to 1.8× RER as PAW (when 𝑐 = 0.48

in the Case 3 of two-pool scenario).

Moreover, we realize two Monte Carlo simulators with Matlab

to verify the accuracy of our theoretical analysis of FWAP attacks

in single-pool and two-pool scenarios, respectively. Besides, we run
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(a) RERPM𝑎 and RERP𝑎 (b) RERPM𝑐 and RERP𝑐

Figure 4: RERPM
𝑎 and RERPM

𝑐 against one pool with 𝜇 de-
fined by Eq. (10). (a) and (b) show the RERs of FWAP attacker
and the colluding pool, respectively, with 𝛼 = 0.2 and 𝜂 = 0.2 and
𝛽 ∈ {0, 1, 0.2, 0, 3}.

(a) RERPM𝑎 and RERP𝑎 (b) RERPM𝑐 and RERP𝑐

Figure 5: RERPM
𝑎 andRERPM

𝑐 against two pools with 𝜇 defined
by Eq. (10). (a) and (b) show the RERs of FWAP attacker and the
colluding pool, respectively, with 𝛼 = 0.2 and 𝜂 = 0.2, and (𝛽1, 𝛽2 ) ∈
{ (0.1, 0.1), (0.2, 0.1), (0.3, 0.1) }.

both simulators over 10
9
rounds. In our experiments, we consider

the real-world mining pools taking an approximate computational

power distribution from [1], which encompasses AntPool with

computational power 21.27%, F2Pool with 16.24%, ViaBTC with

14.71%, BTC.com with 12.24%, Poolin with 13.52%, and SlushPool

with 5%. We let AntPool play the attacker and let Binance be the

colluding pool. The other pools remain in honest mining, which

might be considered as potential victim pools.

Table 3: RERPM
𝑎 (%) against one pool (1P) and two pools (2P).

The value x(y) indicate RERPM
𝑎 in the simulation (x) and theoretical

(y) analysis, respectively.

𝛽 c = 0 c = 0.25 c = 0.5 c = 0.75 c = 1

1P

F2Pool 1.08 (1.07) 1.30 (1.29) 2.14(2.13) 4.19 (4.20) 8.37 (8.38)

BTC.com 0.79(0.80) 1.00 (1.00) 1.86 (1.88) 3.93 (3.92) 8.09 (8.10)

SlushPool 0.31 (0.33) 0.53 (0.53) 1.22 (1.21) 2.85(2.85) 6.44 (6.43)

(𝛽1, 𝛽2 ) c = 0 c = 0.25 c = 0.5 c = 0.75 c = 1

2P

(F2Pool, BTC.com) 2.05 (2.05) 2.45 (2.44) 3.68(3.69) 6.36 (6.33) 11.85 (11.88)

(Poolin, BTC.com) 1.82(1.83) 2.20 (2.20) 3.47 (3.45) 6.27 (6.28) 12.09 (12.10)

(SlushPool, BTC.com) 1.15 (1.13) 1.52 (1.52) 2.82 (2.86) 5.75 (5.74) 11.91 (11.91)

The RERs shown in Table 3 are almost identical in simulation

and theoretical analysis in both scenarios.

7 ANALYSIS OF MINER’S DELIMMA
In this section, we study an attack game between two pools 𝑝1 and

𝑝2 that execute the FWAP attacks against each other. We will show

that the game has a unique Nash equilibrium, so we prove that

FWAP can avoid the “miner’s dilemma” [14]. That is, the game has

a single winner, which is determined by the pool size (i.e., the larger

pool can win the game). Similar to FAW and PAW, we here focus on

a two-pool attack game for simplicity. We leave a detailed analysis

of the generalized game with 𝑛 pools for future work. To analyze

the two-pool FWAP attack game, we define the winning condition

as earning an extra reward.

Theoretical Analysis.We consider a game involving two pools

𝑝1 and 𝑝2 with computational power 𝛼𝑖 (𝑖 ∈ {1, 2}). The pool 𝑝𝑖
will distribute infiltration mining power either 𝑓

(𝑝𝑖 )
1

= 𝜏
(𝑝𝑖 )
1

𝛼𝑖 or

𝑓
(𝑝𝑖 )

2
= 𝜏

(𝑝𝑖 )
2

𝛼𝑖 (after power adjusting) in its opponent pool 𝑝¬𝑖 ,
where ¬𝑖 = 3 − 𝑖 and 𝑖 ∈ {1, 2}. We assume there are two colluding

pools 𝑐𝑝1 and 𝑐𝑝2 which with computational power 𝜂1 and 𝜂2 and

respectively provide the protection money to 𝑝1 and 𝑝2. We list

the additional parameters to analyze a two-pool FWAP game as

follows:

𝑓
(𝑝𝑖 )

1
: Pool 𝑝𝑖 ’s original infiltration mining power;

𝑓
(𝑝𝑖 )

2
: Pool 𝑝𝑖 ’s reallocated infiltration mining power after its

infiltration mining finds an FPoW;

c
(𝑝𝑖 )
1

: Probability of the 𝑝𝑖 ’s withheld FPoW is selected as the

main chain in two-branch cases;

c
(𝑝𝑖 )
2

: Probability of the 𝑝𝑖 ’s withheld FPoW is selected as the

main chain in three-branch cases;

The pool 𝑝𝑖 ’s reward R
(𝑝𝑖 )
𝑎 in a two-pool FWAP game is calcu-

lated in Appendix F. Here we present the analysis result concerning

the Nash equilibrium in the game via the following theorem.

Theorem 7.1. The two-pool FWAP attack game has a unique Nash
equilibrium and the equilibrium point is either a point satisfying
∇f (𝑝1

) R
(𝑝1 )
𝑎 = 0, ∇f (𝑝2

) R
(𝑝2 )
𝑎 = 0; or a point on the borderline which

maximizes R(𝑝1 )
𝑎 with f (𝑝1 ) and R(𝑝2 )

𝑎 with f (𝑝2 ) , where f (𝑝1 ) =

(𝑓 (𝑝1 )
1

, 𝑓
(𝑝1 )

2
) and f (𝑝2 ) = (𝑓 (𝑝2 )

1
, 𝑓

(𝑝2 )
2

).

The proof of this theorem is given in Appendix G.

(a) RER of 𝑝1 when 𝜂1 = 0.1

and 𝜂2 = 0.1

(b) RER of 𝑝2 when 𝜂1 = 0.1

and 𝜂2 = 0.1

(c) RER of 𝑝1 when 𝜂1 = 0.12

and 𝜂2 = 0.1

(d) RER of 𝑝2 when 𝜂1 = 0.12

and 𝜂2 = 0.08

Figure 6: Quantitative analysis results of a two-pool FWAP
game according to pool 𝑝2’s size 𝛼2 and coefficient 𝑐 (𝑐 (𝑝1 )

1
= 𝑐

(𝑝2 )
1

,
𝑐
(𝑝1 )
2

= 𝑐
(𝑝2 )
2

= 𝑐/2) when 𝛼1 = 0.2.

Winning Conditions. In our analysis, the honest mining reward of

𝑝𝑖 is represented by 𝛼𝑖 , which means the total reward of 𝑝𝑖 in a case

that all of the miners in the Bitcoin system are honest (i.e., there is

no attacker in the system). Hence, we say that there is a winner in

the two-pool FWAP game if the reward of any pool 𝑝𝑖 (for 𝑖 ∈ [2])
is more than the pure reward of 𝑝𝑖 . To quantitatively analyze the

reward in a two-pool FWAP game under the Nash equilibrium point,

9
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we first consider symmetric coefficients such that 𝑐
(𝑝1 )
1

= 𝑐
(𝑝2 )
1

= 𝑐 ,

𝑐
(𝑝1 )
2

= 𝑐
(𝑝2 )
2

= 𝑐/2. In particular, we consider two specific settings

concerning the sizes of colluding pools, i.e., i) 𝜂1 = 𝜂2 = 0.1; and

ii) 𝜂1 = 0.12 and 𝜂2 = 0.08. Fig. 6 shows the RERs of 𝑝1 and 𝑝2

with varying 𝛼2 and 𝑐 , a constant 𝛼1 = 0.2, and two colluding-pool

settings, where the black line represents the 𝑅𝐸𝑅 = 0 (the same as

honest mining). Each pool can earn the extra reward above the lines,

so the “prisoner’s dilemma” [14] does not hold. Meanwhile, we use

a protection money ratio 𝜇 obtained from the pricing function in

Eq. (10). It is not hard to see, the pool 𝑝2 may earn more reward in

the game if 𝛼2 > 0.2, and suffer a loss otherwise. By comparing the

results from the two colluding-pool settings, we can see that the

attacker with a bigger colluding pool is harder to defeat.

(a) 𝜂1 = 0.1 and 𝜂2 = 0.1 (b) 𝜂1 = 0.12 and 𝜂2 = 0.08

Figure 7: Winning conditions of pool 𝑝1. The right side of each
line depicts the winning range of the pool 𝑝1 with the corresponding
𝑐. The dotted line shows the constraint such that 𝛼1 + 𝛼2 = 0.8.

In Fig. 7, we further demonstrate the winning conditions of pool

𝑝1 for different coefficients 𝑐 , under the above two colluding-pool

settings, respectively. Each solid line in Fig. 7 represents a border-

line at which the reward of the pool 𝑝1 is identical to the honest

mining (with the same parameters). Since FWAP involves colluding

pools, the computational power of two attackers should satisfy the

constraint 𝛼1 + 𝛼2 ≤ 1 − 𝜂1 − 𝜂2. The area on the right side of each

line represents the winning range of 𝑝1 under the corresponding

𝑐 . The winner in a two-pool FWAP game is determined by its pool

size. Namely, the winning condition is related to the pool sizes 𝛼1

and 𝛼2, and the coefficient 𝑐 . The results, as shown in the second

colluding-pool setting, also imply that the pool 𝑝1 with a bigger

colluding pool is easier to win the game. In a nutshell, the larger

pool can earn an extra reward depending on 𝑐 , while the smaller

pool will always suffer a loss despite 𝑐 . In this sense, the “miner’s

dilemma” can be avoided in the two-pool FWAP game.

8 COUNTERMEASURES
Defending Infiltration Mining. Previous works on block with-

holding attacks (such as [16, 24]) introduce several countermeasures

for reducing the infiltration miners’ reward, which can also be ap-

plied to mitigate the FWAP attack (in which the infiltration mining

still plays a fundamental role). Kwon et al. [24] propose to use a re-

ward strategy that increases the relative value of FPoWs compared

to PPoWs. They show that the infiltration miners’ shares obtained

from the victim pool would be much smaller if most of their con-

tributions are PPoWs. This effectively reduces the incentives for

infiltration mining. We can apply the same strategy to mitigate the

FWAP attack, but we leave the detailed analysis to future work.

In [16], Gao et al. propose to identify and expel infiltration min-

ers by finding stale FPoWs, that is, to discard FPoWs submitted

after the pool has received a new block from external miners for a

pre-defined time threshold T𝑡 (e.g., T𝑡 = 6 seconds [16]).

An ImprovedMethod onDetecting Stale FPoWs.Wefirst revisit

the Gao et al.’s scheme on detecting stale FPoWs, they define a

submission rule that an FPoW submitted by each miner is accepted

as valid if and only if it contains a timestamp T𝑎 within a range

[max(T𝑐 − T𝑡 , 0),T𝑐 + T𝑡 ], where T𝑡 is a time threshold defined

by the pool manager and T𝑐 is current time. A submitted FPoW

is considered as a stale FPoW when the pool manager receives

a block from the others at time T𝑟 , if T𝑟 is not within the range

[T𝑎 − T𝑡 ,T𝑎 + T𝑡 ]. However, we notice that the attacker might

evade this kind of detection with a significant probability. Since

Gao et al.’s scheme allows the attacker to specify the timestamp

for mining an FPoW, so the attacker can always choose a future

timestamp T𝑎 such that T𝑎 is close to the block generation time T𝑟

of the others. Note that T𝑟 might be predictable with a non-small

successful probability following the approach in [11].

Herewe introduce an improved scheme for detecting stale FPoWs

to avoid the above timestamp manipulation issue. Our goal is to

make the attacker have a negligible probability of evading the

detection. Specifically, we let the pool manager refresh the Merkle

root that in the block header every T𝑡 seconds for the miners. In

this sense, a consensus round with mining time length TL is divided

into TL/T𝑡 time slots. The concrete Merkle root of the 𝑖-th time

slot is randomly generated and serves as a unique identifier for the

corresponding time slot. Each new Merkle root will be released to

miners at the end of the 𝑖 − 1-th time slot. Then the pool manager

would only accept an FPoW at a time T𝑐 if it contains a Merkle

root that is associated with the time slot covering T𝑐 . Since each

Merkle root is assigned by the pool manager on the fly, the attackers

cannot predicate it (with a non-negligible probability) and mine for

a future time slot. So the attacker should submit an FPoW once it is

found, otherwise the found FPoW will be treated as a stale FPoW.

In a nutshell, our approach can effectively reduce the intentional

fork caused by infiltration mining. If all mining pools apply our

above patch and refuse to broadcast stale FPoWs, the colluding pool

will not establish a protection racket with the attacker since no

intentional forks will be created against her.

However, if a rational pool manager chooses to distribute stale

blocks and just evict the miner submitting the corresponding stale

FPoW, then the attacker can still exploit the victim pool by contin-

uously sending infiltration miners to the pool with fresh addresses.

We also discussed other countermeasures on detecting the colluding

pool in Appendix I.

9 CONCLUSION
In this paper, we presented a new attack, called FWAP, that extends

existing mining attacks with a strategy involved protection money.

Our attack increases the rewards for both the attacker and the col-

luding pool. Although our work focuses on Bitcoin, the attack also

works with other PoW-based coin systems, such as Litecoin and

ZCash. We have formalized the attack and modeled the pricing

function. However, questions such as finding the optimal pricing

function are left as future work. In Appendix I, we give the discus-

sion on the practicability of FWAP attack in the real world. Finally,

we proposed a new countermeasure to mitigate the FWAP attack

by introducing an improved method to detect the stale FPoWs and

a phishing approach to prevent the colluding pool.
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A PRELIMINARY ON POWER ADJUSTING
Power adjusting is a mining strategy proposed to optimize the

reward of PAW attackers [16]. That is, the attacker dynamically

adjusts the mining power between innocent and infiltration mining

in a given round. As a result, the attacker can always improve her

reward by allocating more power to the more profitable reward

(either a whole block reward or a shared reward). In a single-pool

attack scenario, the attacker will distribute 𝜏𝑖 (for 𝑖 ∈ {1, 2}) fraction
of her computational power for infiltration mining before (with 𝜏1)

or after (with 𝜏2) power adjusting. The rest of 1 − 𝜏𝑖 fraction of her

computational power is used for innocent mining. The main goal

of power adjusting is to determine the optimal portion of the at-

tacker’s computational power to maximize the expected reward in a

given round. Specifically, in each round, the attacker pre-computes

the optimal infiltration mining power 𝜏1 and 𝜏2 to maximize her the

expected reward (e.g., defined by Eq. (1)). Meanwhile, the average

infiltration mining power used in the calculation of the expected

reward is computed following [16, Theorem 5.1]. So the attacker

starts the attack with the infiltration mining power 𝜏1 and adjusts

it to be 𝜏2 when her infiltration mining finds an FFoW before her

innocent mining and the others. The above approach can be gener-

alized to fit in the scenario when infiltrating multiple victim pools.

Our new attack will adopt the identical power adjusting strategy

of PAW, but leverage on the FFoWs found by infiltration mining to

realize the Bitcoin protection racket.
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B PROOF OF THEOREM 5.2
We show that the miner who executes the FWAP attack can get

more rewards comparing to honest mining. Suppose the optimal 𝜏

for an BWH attack. When c = 0, 𝜏1 = 𝜏2 = 𝜏 , and 𝜇 = 0, the reward

of the FWAP attacker R
PM

a
(𝜏1, 𝜏2) is equal to the reward 𝑅B𝑎 of an

BWH attacker since the FWAP attacker cannot get reward from

generating forks with 𝑐 = 0 (that is, the infiltration miners do noth-

ing but withhold their FPoWs as BWH attackers). Previous work

by Luu et al. [25, Theorem IV-B.1] proved that an BWH attacker

can always get more reward than the honest mining by choosing a

proper 𝜏 , so an FWAP attacker with the above-assumed parameters

can always get an extra reward as in the BWH attack regardless of

the attacker’s computing power.

Besides, the attacker will get more rewards than in BWH with

non-zero coefficient c > 0 and the protection money Rm. That is,

we have R
PM

a
(𝜏1, 𝜏2) > R

B

𝑎 + Rm. From Lemma 5.1, we can have that

the colluding reward R
Df

cp
(𝜏1, 𝜏2) is always greater than zero, under

the assumed optimal 𝜏 in the BWH attack (i.e., 𝜏1 = 𝜏2 = 𝜏). This

results in the protection money such that Rm = 𝜇 · RDf
cp
(𝜏1, 𝜏2) > 0

for 𝜇 > 0. Furthermore, if we fix 𝜇 to be an arbitrary positive

number, R
PM

a
(𝜏1, 𝜏2) is an increasing function of c. Therefore, the

extra reward for the FWAP attacker is always lower bounded by

that for the BWH attacker.

C PROOF OF THEOREM 5.3
Recall that if an PAW attacker’s innocent mining fails to generate a

block, but her infiltrationmining wins the fork against the colluding

pool, she is supposed to get a shared reward from the victim pool.

However, an FWAP attacker gives up such a forking opportunity

to provide the protection for the colluding pool, so the attacker

would suffer a reward loss if she gets no protection money from the

colluding pool. A pre-requisite of FWAP attack is that the colluding

reward should be greater than the reward loss, so the attacker

can gain more reward by taking the protection money from the

colluding reward. We first show that this is always held when c > 0.

Since the infiltration miner has 𝜏 ′
1
𝛼 · 𝜂

1−𝜏 ′
2
𝛼
probability to generate

a fork against colluding pool, and has 𝑐 probability to win in the

fork, then the victim pool manager will share
𝜏 ′𝛼

𝛽+𝜏 ′𝛼 fraction of a

block reward with the infiltration miner. By multiplying these two

probabilities, we can have the reward loss

c · 𝜏 ′
1
𝛼 · 𝜂

1 − 𝜏 ′
2
𝛼

· 𝜏 ′𝛼

𝛽 + 𝜏 ′𝛼 . (11)

For comparison, we still use the same infiltration mining power

in both PAW and FWAP. With (𝜏 ′
1
, 𝜏 ′

2
) in PAW, we have a colluding

reward defined by the Eq. (2). By Lemma 5.1, we know that colluding

reward is always greater than zero when 𝑐 > 0, which implies the

victim pool’s reward (from generating forks against the colluding

pool) becomes the colluding reward.

Now we can divide Eq. (11) by Eq. (2) to get
𝜏 ′𝛼

𝛽+𝜏 ′𝛼 . Since the
victim pool’s computational power 𝛽 > 0, the resultant quotient is

always smaller than 1, i.e.,
𝜏 ′𝛼

𝛽+𝜏 ′𝛼 < 1. This implies that the forking

reward is smaller than the colluding reward as well. Therefore, we

can always find a range of protection money ratio 𝜇 that can meet

the FWAP’s pre-requisite. The protection money is 𝜇 fraction of

colluding reward,

𝜇 · c · 𝜏 ′
1
𝛼 · 𝜂

1 − 𝜏 ′
2
𝛼
. (12)

The protection money shown by Eq. (12) should be greater than

the reward loss defined by Eq. (11), i.e.,

c · 𝜏 ′
1
𝛼 · 𝜂

1 − 𝜏 ′
2
𝛼

· 𝜏 ′𝛼

𝛽 + 𝜏 ′𝛼 < 𝜇 · c · 𝜏 ′
1
𝛼 · 𝜂

1 − 𝜏 ′
2
𝛼

⇐⇒ 𝜏 ′𝛼

𝛽 + 𝜏 ′𝛼 < 𝜇. (13)

That is, with a 𝜇 given by Eq. (13), the FWAP attacker can always

earn more rewards than PAW attackers since the protection money

can be more than the reward from winning the fork.

D PROOF OF THEOREM 5.6
We first review the FWAP attack pre-requisite that the protection
money obtained by Lemma 5.5 should be greater than the attacker’s

loss due to giving up the forking chance against the colluding pool.

Analogously, to determine the lower bound of 𝜇, we let 𝜏
(𝑝𝑖 )
𝑗

=

𝜏
(𝑝𝑖 ) ′
𝑗

(for all 𝑗 ∈ [𝑛]), where the latter one is the optimal infiltration

mining power in the PAW attack. The attacker’s loss caused by

protecting the colluding pool is

𝑛∑︁
𝑖=1

∑︁
p𝑖 ∈P𝑖

(
𝑖∑︁

𝑘=1

�
SH

(𝑝𝑘 )
𝑖

𝜂c
(𝑝𝑘 )
𝑖

· �POp𝑖

)
.

And the colluding reward is

∑𝑛
𝑖=1

∑
p𝑖 ∈P𝑖

(∑𝑖
𝑘=1

𝜂c
(𝑝𝑘 )
𝑖

P̂Op𝑖

)
.

From the following inequality (representing the FWAP attack

pre-requisite), we can obtain the lower bound of 𝜇

𝜇

𝑛∑︁
𝑖=1

∑︁
p𝑖 ∈P𝑖

(
𝑖∑︁

𝑘=1

𝜂c
(𝑝𝑘 )
𝑖

�POp𝑖

)
>

𝑛∑︁
𝑖=1

∑︁
p𝑖 ∈P𝑖

(
𝑖∑︁

𝑘=1

�
SH

(𝑝𝑘 )
𝑖

𝜂c
(𝑝𝑘 )
𝑖

�POp𝑖

)

⇐⇒ 𝜇 >

∑𝑛
𝑖=1

∑
p𝑖 ∈P𝑖

{∑𝑖
𝑘=1

�
SH

(𝑝𝑘 )
𝑖

c

(𝑝𝑘 )
𝑖

�POp𝑖

}
∑𝑛

𝑖=1

∑
p𝑖 ∈P𝑖

{∑𝑖
𝑘=1

c

(𝑝𝑘 )
𝑖

�POp𝑖

} .

E PROTECTION RACKET
In this section, we describe an end-to-end instantiation of the FWAP

attack. This includes how the attacker establishes the protection

racket with a pool that is willing to pay. The main procedures of

the protection racket is also shown in Figure 8. In the following, we

assume communication between the attacker and any other party

is secure and does not reveal the attacker’s true identity.

Initial Contact. The FWAP attacker contacts a potential colluding

pool 𝑐𝑝 , advertising that it has the ability to generate forks against

𝑐𝑝’s blocks. If the pool responds positively, both the pool and the

attacker move to the next phase. Otherwise, the attacker looks for

another potential colluding pool.

Proving Forking Ability. The attacker needs to convince 𝑐𝑝 that it

can fork. To do so, once it finds a valid FPoW through the infiltration

miners, it withholds the FPoW. But when it sees that 𝑐𝑝 broadcasts

a new block in the same round, it immediately submits the FPoW

to the victim pool’s manager and 𝑐𝑝 simultaneously. If 𝑐𝑝 sees that

the block released by the victim pool contains the received FPoW,

then it believes in the attacker’s forking ability.

Agreement and Preparation. The FWAP attacker and 𝑐𝑝 then

enters into an agreement on their collusion. We identify four con-

ditions for the agreement as follows:

• C1: If the attacker finds a valid FPoW and 𝑐𝑝 also finds a block but the

other miners have not found a block yet, the attacker can send the valid

FPoW to 𝑐𝑝 to ask for the immediate payment.
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• C2: If 𝑐𝑝 receives a valid FPoW which can be used to generate a fork

against her, it immediately pays the PM to the attacker. We assume that

the attacker has sufficient communication bandwidth and latency so that

it can minimize the impact of waiting for PM.

• C3: If either 𝑐𝑝 fails to pay or the attacker sees that 𝑐𝑝 is forked by other

blocks, the attacker will submit this FPoW to create a fork instead of

demanding PM.

• C4: If 𝑐𝑝 is forked by any other blocks after paying the PM in this round,

𝑐𝑝 can get a refund through the attacker’s deposit (discussed later).

We note that C2, C3, and C4 ensure that the FWAP attack can

downgrade to the PAW attack when necessary, so the attacker’s

profit is not harmed. Once 𝑐𝑝 and the attacker agree on all the above

conditions, they can determine the PM ratio 𝜇 based on Eq. (10).

For simplicity, we assume that a colluding pool will only enter into

such agreement with one FWAP attacker. Also, this can reduce the

risk of the disclosure of the colluding pool.

Attacker’s Deposit. As both the attacker and the colluding pool

can gain more reward (as analyzed in Section 5 and 5.2), they are

motivated to keep performing the attack for a long period. However,

a dishonest attacker may break the agreement at some point (e.g.,

when it wants to terminate the attack). Since the colluding pool is

required to pay the PM immediately upon receiving the FPoW from

the attacker, the latter can submit the FPoW to the victim pool after

receiving the payment, which causes a loss to 𝑐𝑝 due to the fork

and the paid money. Furthermore, if the attacker, having been paid,

fails to protect the colluding pool 𝑐𝑝 from other forks, the colluding

pool should be able to get a refund (C4).
Here we describe a deposit mechanism to protect the colluding

pool’s interests. Specifically, the attacker puts some money into a

deposit account, and the colluding pool can claim the amount if the

following refund condition is held:

• Two valid blocks are broadcast in a given round after the col-

luding pool has paid the PM in that round, in which one of the

blocks is from the colluding pool.

The attacker can re-claim this deposit after a pre-determined dura-

tion has passed, during which refund condition is not triggered.

The FWAP attacker needs to protect itself from a dishonest col-

luding pool who claims the deposit without paying PM. That is,

the colluding pool must provide a proof that it has paid the PM.

To realize this, we leverage a hash based commitment scheme to

generate payment tokens for creating both deposit and PM (PM)

transactions. Paying the PM is done by opening the committed

value. In the following, we describe a high-level idea of the deposit

in conjunction with the payment procedure.

Figure 8: Main Procedures of Protection Racket.

Payment. Let 𝐻 : {0, 1}∗ → {0, 1}𝜅 be collision-resistant hash

function, where 𝜅 is a security parameter. Let 𝑁 be the number

of potential protections for a PM ratio. To ensure a fast payment

process during the FWAP attack, the attacker and the colluding

pool can pre-create 𝑁 deposit and PM transactions, respectively.

First, the deposit as follows:

• The colluding pool generates 𝑁 random values {𝑥𝑖 }𝑖∈[𝑁 ] and
compute ℎ𝑖 := 𝐻 (𝑥𝑖 ) for 𝑖 ∈ [𝑁 ], where each 𝑥𝑖 has 𝜅 bits.

• The set of hash values {ℎ𝑖 }𝑖∈[𝑁 ] is sent to the FWAP attacker.

• The attacker can realize the above refund condition by transform-

ing it into the following logically equivalent sub-conditions: i)

two valid blocks should have the same previous hash prev_hash

of the last accepted block; ii) the 𝑖-th block of the colluding pool

should contain a transaction involving ℎ𝑖 (for 𝑖 ∈ [𝑁 ]), and it

has been digitally signed by the attacker using the secret key of

one of her minions; iii) the colluding pool can provide the valid

pre-image 𝑥𝑖 of ℎ𝑖 .

Next, the colluding pool can create 𝑁 PM transactions based on

Bitcoin script [8] with constraints: i) the PM in each transaction

will be returned to the colluding pool after a specified expiry time;

ii) the 𝑖-th PM can be used by the attacker if 𝑥𝑖 is presented.

For the subsequent executions of the FWAP attack, when the

colluding pool 𝑐𝑝 generates the 𝑖-th block blk𝑖 with a valid ℎ𝑖 , the

attacker can send the signed blk𝑖 and a valid FPoW (that can be

used to create a fork against blk𝑖 ) to the colluding pool as the 𝑖-

th payment request. Then, the colluding pool opens the 𝑥𝑖 to the

attacker to claim the 𝑖-th payment.

FWAP attackers and colluding pools can tailor smart contracts

based on [38] (which supports the secure and efficient execution

of generic smart contracts for legacy cryptocurrencies) to realize

forking ability proving and payment. We leave the concrete imple-

mentation as future work.

F CALCULATION OF THE REWARD OF AN
ATTACKER IN A TWO-POOL FWAP GAME

We calculate the reward R
(𝑝𝑖 )
𝑎 of a pool 𝑝𝑖 under the following cases

(which are parameterized by 𝑝𝑖 ):

Case 1 (𝑝𝑖 ): 𝑝𝑖 ’s innocent mining finds an FPoW;

Case 2 (𝑝𝑖 ): 𝑝𝑖 ’s infiltration mining (in 𝑝¬𝑖 ) finds an FPoW first and then

her innocent mining finds another FPoW;

Case 3 (𝑝𝑖 ): 𝑝¬𝑖 ’s infiltration mining (in 𝑝𝑖 ) first finds an FPoW and then

𝑝𝑖 ’s innocent mining finds another FPoW;

Case 4 (𝑝𝑖 ): 𝑝1’s infiltration mining (in 𝑝2), 𝑝2’s infiltration mining (in 𝑝1),

and 𝑝𝑖 ’s innocent mining find three FPoWs in order;

Case 5 (𝑝𝑖 ): 𝑝2’s infiltration mining (in 𝑝1), 𝑝1’s infiltration mining, and

𝑝𝑖 ’s innocent mining find three FPoWs in order.

Case 6 (𝑝𝑖 ): 𝑝¬𝑖 ’s infiltration mining (in 𝑝𝑖 ) finds an FPoW and then other

miners (except for 𝑐𝑝¬𝑖 ) find an FPoW;

Case 7 (𝑝𝑖 ): 𝑝1’s infiltration mining (in 𝑝2), 𝑝2’s infiltration mining (in 𝑝1),

and other miners find three FPoWs in order;

Case 8 (𝑝𝑖 ): 𝑝2’s infiltration mining (in 𝑝1), 𝑝1’s infiltration mining (in 𝑝2),

and other miners find three FPoWs in order.

In a two-pool FWAP game, the reward R
(𝑝𝑖 )
𝑎 of the pool 𝑝𝑖 con-

sists of the reward R
(𝑝𝑖 )
𝑖𝑛𝑛𝑜

of innocent mining, the reward R
(𝑝𝑖 )
𝑓 𝑜𝑟𝑘

of

creating a fork, the share R
(𝑝𝑖 )
𝑠ℎ𝑎𝑟𝑒

obtained by infiltrationmining, and

protection money R
(𝑝𝑖 )
m

from its colluding pool. In the following, we

specifically calculate the four reward sources of R
(𝑝𝑖 )
𝑎 , respectively.
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First, the pool 𝑝𝑖 can get rewards in Cases 1∼5 (𝑝𝑖 ) by innocent

mining, which are: R
(𝑝𝑖 )
C1 (𝑝𝑖 ) = 𝛼𝑖 − 𝑓

(𝑝𝑖 )
1

; R
(𝑝𝑖 )
C2 (𝑝𝑖 ) = 𝑓

(𝑝𝑖 )
1

𝛼𝑖−𝑓 (𝑝𝑖 )
2

1−𝑓 (𝑝𝑖 )
2

;

R
(𝑝𝑖 )
C3 (𝑝𝑖 ) = 𝑓

(𝑝¬𝑖 )
1

𝛼𝑖−𝑓 (𝑝𝑖 )
1

1−𝑓 (𝑝¬𝑖 )
2

; R
(𝑝𝑖 )
C4 (𝑝𝑖 ) = 𝑓

(𝑝1 )
1

𝑓
(𝑝

2
)

1

1−𝑓 (𝑝
1
)

2

𝛼𝑖−𝑓 (𝑝𝑖 )
2

1−𝑓 (𝑝
1
)

2
−𝑓 (𝑝

2
)

2

;

R
(𝑝𝑖 )
C5 (𝑝𝑖 ) = 𝑓

(𝑝2 )
1

𝑓
(𝑝

1
)

1

1−𝑓 (𝑝
2
)

2

𝛼𝑖−𝑓 (𝑝𝑖 )
2

1−𝑓 (𝑝
1
)

2
−𝑓 (𝑝

2
)

2

. Then we can derive the re-

ward of 𝑝𝑖 from innocent mining as R
(𝑝𝑖 )
𝑖𝑛𝑛𝑜

=
∑

5

𝑘=1
R
(𝑝𝑖 )
C𝑘 (𝑝𝑖 )

.

Second, the pool 𝑝𝑖 can get reward from causing a fork in Cases

6∼8 (𝑝𝑖 ) when any FPoW from 𝑝𝑖 (including the one submitted

by the infiltration miners of 𝑝¬𝑖 ) in these cases is selected as the

main chain. The reward of 𝑝𝑖 in the these cases are R
(𝑝𝑖 )
C6 (𝑝𝑖 ) =

c
(𝑝¬𝑖 )
1

𝑓
(𝑝¬𝑖 )

1

1−𝛼1−𝛼2−𝜂¬𝑖
1−𝑓 (𝑝¬𝑖 )

2

, R
(𝑝𝑖 )
C7 (𝑝𝑖 ) = c

(𝑝¬𝑖 )
2

𝑓
(𝑝1 )

1

𝑓
(𝑝

2
)

1

1−𝑓 (𝑝
1
)

2

1−𝛼1−𝛼2

1−𝑓 (𝑝
1
)

2
−𝑓 (𝑝

2
)

2

,

and R
(𝑝𝑖 )
C8 (𝑝𝑖 ) = c

(𝑝¬𝑖 )
2

𝑓
(𝑝2 )

1

𝑓
(𝑝

1
)

1

1−𝑓 (𝑝
2
)

2

1−𝛼1−𝛼2

1−𝑓 (𝑝
1
)

2
−𝑓 (𝑝

2
)

2

, respectively. So

the reward of 𝑝𝑖 from creating a fork is R
(𝑝𝑖 )
𝑓 𝑜𝑟𝑘

=
∑

8

𝑘=6
R
(𝑝𝑖 )
C𝑘 (𝑝𝑖 )

.

Third, if the pool 𝑝¬𝑖 gets a block reward, 𝑝𝑖 can obtain shares of

the reward depending on her average infiltration mining power in

𝑝¬𝑖 . We use 𝑓
(𝑝𝑖 )
C𝑘 (𝑝 𝑗 ) to generically denote the average infiltration

mining power in the corresponding Case k (𝑝 𝑗 ) (where C𝑘 (𝑝 𝑗 ) is
an abbreviation for Case k (𝑝 𝑗 )). The concrete value of 𝑓

(𝑝𝑖 )
C𝑘 (𝑝 𝑗 ) in

each case is given in Table 4 (e.g., the value of 𝑓
(𝑝1 )
C7 (𝑝1 ) in Case 7 (𝑝1)

is 𝑓
(𝑝1 )
1,2,2 ). The cells, which are associated with the cases involving

power adjusting, are calculated as

𝑓
(𝑝𝑖 )
1,2 =

𝑓
(𝑝𝑖 )

1
+𝑓 (𝑝𝑖 )

2
−𝑓 (𝑝𝑖 )

1
𝑓
(𝑝𝑖 )

2

2−𝑓 (𝑝𝑖 )
2

, 𝑓
(𝑝𝑖 )
1,1,2 =

2𝑓
(𝑝𝑖 )

1
(1−𝑓 (𝑝

1
)

2
−𝑓 (𝑝

2
)

2
)+𝑓 (𝑝𝑖 )

2

3−2(𝑓 (𝑝
1
)

2
+𝑓 (𝑝

2
)

2
)

,

and 𝑓
(𝑝𝑖 )
1,2,2 =

(𝑓 (𝑝𝑖 )
1

+𝑓 (𝑝𝑖 )
2

) (1−𝑓 (𝑝
1
)

2
−𝑓 (𝑝

2
)

2
)+𝑓 (𝑝𝑖 )

2

3−2(𝑓 (𝑝
1
)

2
+𝑓 (𝑝

2
)

2
)

, respectively.

Table 4: Average infiltration power.

𝑓
(𝑝

1
)

C𝑘 (𝑝
1
) 𝑓

(𝑝
2
)

C𝑘 (𝑝
1
) 𝑓

(𝑝
1
)

C𝑘 (𝑝
2
) 𝑓

(𝑝
2
)

C𝑘 (𝑝
2
)

Case 1 (𝑝1) 𝑓
(𝑝

1
)

1
𝑓
(𝑝

2
)

1
Case 1 (𝑝2) 𝑓

(𝑝
1
)

1
𝑓
(𝑝

2
)

1

Case 2 (𝑝1) 𝑓
(𝑝

1
)

1,2 𝑓
(𝑝

2
)

1
Case 2 (𝑝2) 𝑓

(𝑝
1
)

1
𝑓
(𝑝

2
)

1,2

Case 3 (𝑝1) 𝑓
(𝑝

1
)

1
𝑓
(𝑝

2
)

1,2 Case 3 (𝑝2) 𝑓
(𝑝

1
)

1,2 𝑓
(𝑝

2
)

1

Case 4 (𝑝1) 𝑓
(𝑝

1
)

1,2,2 𝑓
(𝑝

2
)

1,1,2 Case 4 (𝑝2) 𝑓
(𝑝

1
)

1,2,2 𝑓
(𝑝

2
)

1,1,2

Case 5 (𝑝1) 𝑓
(𝑝

1
)

1,1,2 𝑓
(𝑝

2
)

1,2,2 Case 5 (𝑝2) 𝑓
(𝑝

1
)

1,1,2 𝑓
(𝑝

2
)

1,2,2

Case 6 (𝑝1) 𝑓
(𝑝

1
)

1
𝑓
(𝑝

2
)

1,2 Case 6 (𝑝2) 𝑓
(𝑝

1
)

1,2 𝑓
(𝑝

2
)

1

Case 7 (𝑝1) 𝑓
(𝑝

1
)

1,2,2 𝑓
(𝑝

2
)

1,1,2 Case 7 (𝑝2) 𝑓
(𝑝

1
)

1,2,2 𝑓
(𝑝

2
)

1,1,2

Case 8 (𝑝1) 𝑓
(𝑝

1
)

1,1,2 𝑓
(𝑝

2
)

1,2,2 Case 8 (𝑝2) 𝑓
(𝑝

1
)

1,1,2 𝑓
(𝑝

2
)

1,2,2

When the pool 𝑝𝑖 gets a block reward or a share (obtained by her

infiltration mining) in each Case k (𝑝𝑖 ), 𝑝𝑖 shares such an income

with her opponent pool 𝑝¬𝑖 proportional to the infiltration mining

power 𝑓
(𝑝¬𝑖 )
C𝑘 (𝑝𝑖 ) . In particular, the two attacking pools will share

each other’s prior shares back and forth in many rounds which

we call sharing rounds. That is, in the 𝑛-th sharing round, the pool

𝑝𝑖 can receive the shares that are determined by the shares of 𝑝¬𝑖
obtained in her 𝑛 − 1-th sharing round. We let R

(𝑝𝑖 )
𝑆𝑛,𝐶𝑘 (𝑝¬𝑖 )

be the

shared reward of 𝑝𝑖 in the 𝑛-th round under the Case k (𝑝¬𝑖 ). We

can derive the following generic expressions of the shared reward

in the Case k (𝑝𝑖 ) for the 𝑛-th sharing round as R
(𝑝𝑖 )
𝑆𝑛+2,𝐶𝑘 (𝑝¬𝑖 )

=

R
(𝑝𝑖 )
𝑆𝑛,𝐶𝑘 (𝑝¬𝑖 )

𝑓
(𝑝¬𝑖 )
C𝑘 (𝑝¬𝑖 )

𝛼𝑖+𝑓
(𝑝¬𝑖 )
C𝑘 (𝑝¬𝑖 )

𝑓
(𝑝𝑖 )
C𝑘 (𝑝¬𝑖 )

𝛼2+𝑓
(𝑝𝑖 )
C𝑘 (𝑝¬𝑖 )

(for odd 𝑛), and R
(𝑝𝑖 )
𝑆𝑛+2,𝐶𝑘 (𝑝𝑖 )

=

R
(𝑝𝑖 )
𝑆𝑛,𝐶𝑘 (𝑝𝑖 )

𝑓
(𝑝¬𝑖 )
C𝑘 (𝑝𝑖 )

𝛼𝑖+𝑓
(𝑝¬𝑖 )
C𝑘 (𝑝𝑖 )

𝑓
(𝑝𝑖 )
C𝑘 (𝑝𝑖 )

𝛼2+𝑓
(𝑝𝑖 )
C𝑘 (𝑝𝑖 )

(for even 𝑛), where the shares in first

two sharing rounds are R

(𝑝𝑖 )
𝑆

1
,𝐶𝑘 (𝑝¬𝑖 )

=R
(𝑝¬𝑖 )
C𝑘 (𝑝¬𝑖 )

𝑓
(𝑝𝑖 )
C𝑘 (𝑝¬𝑖 )

𝛼¬𝑖+𝑓
(𝑝𝑖 )
C𝑘 (𝑝¬𝑖 )

and R

(𝑝𝑖 )
𝑆

2
,𝐶𝑘 (𝑝𝑖 )

=

R

(𝑝¬𝑖 )
𝑆

1
,𝐶𝑘 (𝑝𝑖 )

𝑓
(𝑝𝑖 )
C𝑘 (𝑝𝑖 )

𝛼¬𝑖+𝑓
(𝑝𝑖 )
C𝑘 (𝑝𝑖 )

, respectively. Note that the sharing rounds with

the same parity have a common source, i.e., R
(𝑝𝑖 )
C𝑘 (𝑝¬𝑖 )

in the odd

sharing rounds and R
(𝑝𝑖 )
C𝑘 (𝑝𝑖 )

in the even sharing rounds.

To simplify our following expressions, we introduce a function

𝐹 (𝑎, 𝑏) = 1 + 𝑎𝑏
𝛼𝑖𝛼¬𝑖+𝛼¬𝑖𝑏+𝑎𝛼𝑖 . When 𝑛 approaches infinity, the pool

shared reward of the pool 𝑝𝑖 in the last sharing round can be negli-

gible. The sums of shared reward in the even and the odd rounds

can be therefore derived as

∑
𝑛=2𝑘+1

𝑘∈N
R
(𝑝𝑖 )
𝑆𝑛,𝐶𝑘 (𝑝¬𝑖 )

= R
(𝑝𝑖 )
𝑆1,𝐶𝑘 (𝑝¬𝑖 )

·

𝐹 (𝑓 (𝑝𝑖 )C𝑘 (𝑝¬𝑖 ) , 𝑓
(𝑝¬𝑖 )
C𝑘 (𝑝¬𝑖 ) ) and

∑
𝑛=2𝑘
𝑘∈N∗

R
(𝑝𝑖 )
𝑆𝑛,𝐶𝑘 (𝑝𝑖 )

= R
(𝑝𝑖 )
𝑆2,𝐶𝑘 (𝑝𝑖 )

·𝐹 (𝑓 (𝑝𝑖 )C𝑘 (𝑝𝑖 ) ,

𝑓
(𝑝¬𝑖 )
C𝑘 (𝑝𝑖 ) ), respectively. The shared reward of 𝑝𝑖 in a two-pool FWAP

game is R
(𝑝𝑖 )
𝑠ℎ𝑎𝑟𝑒

=
∑

8

𝑘=1

{∑
𝑛=2𝑘+1

𝑘∈N
R
(𝑝𝑖 )
𝑆𝑛,𝐶𝑘 (𝑝¬𝑖 )

+ ∑
𝑛=2𝑘
𝑘∈N∗

R
(𝑝𝑖 )
𝑆𝑛,𝐶𝑘 (𝑝𝑖 )

}
.

Forth, we consider the PM of the colluding pool 𝑐𝑝𝑖 in the ex-

change of protection. Similarly, we start with the calculation of the

lower bound of the PM ratio 𝜇 that 𝑐𝑝𝑖 can afford. We let R
P

𝑐𝑝𝑖
and

R
PM

𝑐𝑝𝑖
be 𝑐𝑝𝑖 ’s reward in PAW and FWAP, respectively. And let R

Df

𝑐𝑝𝑖

denote the colluding reward of 𝑐𝑝𝑖 , and R
(𝑝𝑖 )
𝑙𝑜𝑠𝑠

be the 𝑝𝑖 ’s reward

loss while offering the protection to 𝑐𝑝𝑖 without PM. Following the

approach in Section 5, we can first evaluate the lower bound of PM

ratio using the optimal infiltration power (𝑓 (𝑝𝑖 )
′

1
, 𝑓

(𝑝𝑖 ) ′
2

) in PAW,

i.e., we set (𝑓 (𝑝𝑖 )
1

, 𝑓
(𝑝𝑖 )

2
) = (𝑓 (𝑝𝑖 )

′

1
, 𝑓

(𝑝𝑖 ) ′
2

) in the following calcula-

tions. Since the PM should be larger than the attacker’s reward loss

because of withholding the FPoW to protect the colluding pool for

free, so the lower bound of 𝜌𝑖 should satisfy that 𝜌𝑖 >
R
(𝑝𝑖 )
𝑙𝑜𝑠𝑠

R
PM

𝑐𝑝𝑖
−RP𝑐𝑝𝑖

.

The pool 𝑝𝑖 will offer protection to her colluding pool 𝑐𝑝𝑖 if

and only if her infiltration mining in 𝑝¬𝑖 finds an FPoW before

𝑐𝑝𝑖 . For other cases, 𝑝𝑖 distributes the FPoW found within her pool.

Similar to the single-pool FWAP attack, the colluding reward of

the colluding pool while enjoying the protection can be derived as

R
Df

𝑐𝑝𝑖
= R

PM

𝑐𝑝𝑖
− R

P

𝑐𝑝𝑖
= c

(𝑝𝑖 )
1

𝑓
(𝑝𝑖 )

1

𝜂𝑖

1−𝑓 (𝑝𝑖 )
2

. The reward loss of 𝑝𝑖 for

protecting 𝑐𝑝𝑖 is R
(𝑝𝑖 )
𝑙𝑜𝑠𝑠

= c
(𝑝𝑖 )
1

𝑓
(𝑝𝑖 )

1

𝜂𝑖

1−𝑓 (𝑝𝑖 )
2

𝑓
(𝑝𝑖 )
1,2

𝛼¬𝑖+𝑓
(𝑝𝑖 )
1,2

. By dividing

the reward loss by the colluding reward, we can obtain the esti-

mated PM ratio’s lower bound 𝜌𝑖 =
R
(𝑝𝑖 )
𝑙𝑜𝑠𝑠

R
PM

𝑐𝑝𝑖
−RP𝑐𝑝𝑖

=
R
(𝑝𝑖 )
𝑙𝑜𝑠𝑠

R
Df

𝑐𝑝𝑖

. Based on

Eq. (10), we can obtain an effective PM ratio of 𝑐𝑝𝑖 in a two-pool

FWAP game 𝜇𝑖 = 𝜌𝑖 + c
(𝑝𝑖 )
1

· (1 − 𝜌𝑖 − 𝜖) .Once the the PM ratio 𝜇𝑖
is agreed, the pool 𝑝𝑖 can re-calculate the optimal infiltrationmining

power (𝑓 (𝑝𝑖 )
1

, 𝑓
(𝑝𝑖 )

2
) in FWAP that can result in an optimal collud-

ing reward (RPM𝑐𝑝𝑖 − R
P

𝑐𝑝𝑖
) in a two-pool FWAP game. Eventually,

the attacker 𝑝𝑖 can receive a protection money R
(𝑝𝑖 )
m

= 𝜇𝑖 · RDf𝑐𝑝𝑖 .
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Therefore, the reward R
(𝑝𝑖 )
𝑎 of the pool 𝑝𝑖 in a two-pool FWAP

game can be expressed as R
(𝑝𝑖 )
𝑎 = R

(𝑝𝑖 )
𝑖𝑛𝑛𝑜

+ R
(𝑝𝑖 )
𝑓 𝑜𝑟𝑘

+ R
(𝑝𝑖 )
𝑠ℎ𝑎𝑟𝑒

+ R
(𝑝𝑖 )
m

.

G PROOF OF THEOREM 7.1
Obviously, a two-pool FWAP game is a constrained 2-person game,

in which the constrains for each pool 𝑝𝑖 and her reward depends

on the strategy (i.e., the distribution of infiltration mining power)

of its opponent pool 𝑝¬𝑖 . In [31, Theorem 1], Rosen proves that an

equilibrium point exists for every concave n-person game. Hence,

to prove the existence of Nash equilibrium exists in a two-pool

FWAP game, it suffices to show that the second partial derivatives

of R
(𝑝1 )
𝑎 and R

(𝑝2 )
𝑎 ) for f (𝑝1 )

and f (𝑝2 )
, respectively, are always

negative (i.e., ∇f (𝑝1
) (∇f (𝑝1

)R
(𝑝1 )
𝑎 ) < 0 and ∇f (𝑝2

) (∇f (𝑝2
)R

(𝑝2 )
𝑎 ) < 0)

under the following conditions:

0 ≤ 𝑓
(𝑝

1
)

1
, 𝑓

(𝑝
2
)

1
≤ 𝛼1 ≤ 1, 0 ≤ 𝑓

(𝑝
1
)

2
, 𝑓

(𝑝
2
)

2
≤ 𝛼2 ≤ 1

𝛼1 + 𝛼2 ≤ 1, 0 ≤ c

(𝑝
1
)

1
, c

(𝑝
1
)

2
≤ 1, 0 ≤ c

(𝑝
1
)

2
+ c

(𝑝
2
)

2
≤ 1; (14)

0 ≤ 𝜂1, 𝜂2 ≤ 1, 𝜂1 + 𝜂2 ≤ 1, 0 ≤ 𝛼1 + 𝛼2 + 𝜂1 + 𝜂2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

Moreover, we find the equilibrium point using the Best-response

dynamics method. We initiate the game by setting the infiltration

mining power of the two pools to be (f (𝑝1 )
0

, f (𝑝2 )
0

) = ((0, 0), (0, 0)).
Next, the pools will alternately adjust their infiltration mining

power to maximize R
(𝑝1 )
𝑎 and R

(𝑝2 )
𝑎 . Namely, the pool 𝑝1 first ad-

justs her infiltration power to be f (𝑝1 )
1

to get the maximized R
(𝑝1 )
𝑎 ,

and then the pool 𝑝2 updates her infiltration power f (𝑝2 )
1

to max-

imize R
(𝑝2 )
𝑎 based on f (𝑝1 )

1
. Both pools will repeat this procedure

under the constraints in Eq. (14) to maximize their reward till

f (𝑝1 )
and f (𝑝2 )

converge. In the 𝑘-th iteration, f (𝑝1 )
𝑘

and f (𝑝2 )
𝑘

can

be derived as f (𝑝1 )
𝑘

= arg maxf (𝑝1
) R

(𝑝1 )
𝑎 (f (𝑝1 ) , f (𝑝2 )

𝑘−1
) and f (𝑝2 )

𝑘
=

arg maxf (𝑝2
) R

(𝑝2 )
𝑎 (f (𝑝1 )

𝑘
, f (𝑝2 ) ) . We can find the Nash equilibrium

point in the two-pool FWAP game when 𝑘 approaches infinity and

f (𝑝1 )
and f (𝑝2 )

converge. That is, the Nash equilibrium (f (𝑝1 ) , f (𝑝2 ) )
is either a point satisfying ∇f (𝑝1

)R
(𝑝1 )
𝑎 = 0 and ∇f (𝑝1

)R
(𝑝1 )
𝑎 = 0, or

a point on a borderline in Eq. (14) which maximizes (R
(𝑝1 )
𝑎 , R

(𝑝2 )
𝑎 )

with (f (𝑝1 ) , f (𝑝2 )
).

H COLLUDING POOL IN GAME
Fig. 9 shows colluding pools 𝑐𝑝1 and 𝑐𝑝2’s relative extra rewards

in a two-pool FWAP game in the comparison with their rewards

in a two-pool PAW game (with the similar setting in Fig. 6). That

is, colluding pools’ rewards are always more than that in the PAW

attack game, because as in other FWAP attack scenarios, 𝑝1 and 𝑝2

will try to increase PM by adjusting infiltration mining power and

increasing colluding pools’ reward. Hence, this further confirms

that colluding pools would join the FWAP attack.

I MISCELLANEOUS
Practicability Discussion. For the initial contact phase, the attack-
ers first wrap the FWAP and advertise it as any other investment

advertisements (e.g., via email, short message, or leaflet) to the

potential colluding pool. Meanwhile, the FWAP attacker may try to

create some intentional forks against the potential colluding pool

(a) RER of 𝑐𝑝1 when 𝜂1 = 0.1

and 𝜂2 = 0.1

(b) RER of 𝑐𝑝2 when 𝜂1 = 0.1

and 𝜂2 = 0.1

(c) RER of 𝑐𝑝1 when 𝜂1 = 0.12

and 𝜂2 = 0.08

(d) RER of 𝑐𝑝2 when 𝜂1 = 0.12

and 𝜂2 = 0.08

Figure 9: Quantitative analysis results for colluding pools in a
two-pool FWAP game according to pool 𝑝2’s size 𝛼2 and coefficient
𝑐 (𝑐 (𝑝1 )

1
= 𝑐

(𝑝2 )
1

, 𝑐 (𝑝1 )
2

= 𝑐
(𝑝2 )
2

= 𝑐/2) when 𝛼1 = 0.2.

to raise its attention. A rational pool manager (for gaining higher

rewards) may choose to join the FWAP attack, no matter what its

pool size is. Our result of Theorem 5.4 shows that a colluding pool

can always gain more rewards in FWAP than in honest mining

and in PAW, in spite of the size of the colluding pool. That is, a

big colluding pool may also lose the fork competition with some

probability, and then suffer a loss. Meanwhile, it might be impossi-

ble that all honest pools can resist such a temptation of the extra

rewards brought by FWAP. For executing the FWAP attack, we do

not require parties in FWAP to be near each other but need them to

create high-speed connection channels during the attack (to ensure

a fast FPoW exchange). Since the attacker and the colluding pool

will first establish a secret pact before trading subsequent forking

FPoWs, so they can pre-establish some kind of fast one-to-one com-

munication channel (such as AT&T Dedicated Internet) to reduce

latency. In addition, our tailored protection racket in Appendix E

can ensure the interests of the colluding pools in any protection

failures. In a nutshell, the whole life cycle of FWAP can be practical.

Other Countermeasures. As a colluding pool is complicit in the

FWAP attack, it is important to detect and punish such a pool. Sup-

pose the potential colluding pool uses her public contact methods to

negotiate with the attacker. Honest miners can also masquerade as

an attacker to test whether a pool is willing to become a colluding

pool. However, this approach may not work if the negotiation takes

place out-of-band, since one may not know all the contact methods

used by the attacker and the colluding pool. Also, it is an open

question to punish a colluding pool (without modifying the Bitcoin

protocol) once it is identified.

Finally, the colluding pool can be identified based on the con-

dition of the deposit if the method used to realize the deposit is

known. This approach works because the spending condition of the

deposit records the event that the colluding pool’s block is forked

and the protection money is paid. This is a current limitation of our

work. However, we note that the attacker can obfuscate the deposit

mechanism to avoid being detected. We leave the design of such

deposit mechanisms as future work.
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